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Chapter 7 
Dimensional 

Analysis 
 
 
Dimensions and Units, Primary Dimensions 
 
7-1C 
Solution We are to explain the difference between a dimension and a unit, and 
give examples.  
 
Analysis A dimension is a measure of a physical quantity (without 
numerical values), while a unit is a way to assign a number to that dimension. 
Examples are numerous – length and meter, temperature and oC, weight and lbf, mass 
and kg, time and second, power and watt,… 
 
Discussion When performing dimensional analysis, it is important to recognize 
the difference between dimensions and units. 

  
 
 
7-2C 
Solution We are to append Table P7-2 with other parameters and their primary 
dimensions.  
 
Analysis Students’ tables will differ, but they should add entries such as 
angular velocity, kinematic viscosity, work, energy, power, specific heat, thermal 
conductivity, torque or moment, stress, etc. 
 
Discussion This problem should be assigned as an ongoing homework problem 
throughout the semester, and then collected towards the end. Individual instructors 
can determine how many entries to be required in the table. 
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7-3C 
Solution We are to list the seven primary dimensions and explain their 
significance.  
 
Analysis The seven primary dimensions are mass, length, time, temperature, 
electrical current, amount of light, and amount of matter. Their significance is 
that all other dimensions can be formed by combinations of these seven primary 
dimensions. 
 
Discussion One of the first steps in a dimensional analysis is to write down the 
primary dimensions of every variable or parameter that is important in the problem. 

  
 
 
7-4 
Solution We are to write the primary dimensions of the universal ideal gas 
constant.  
 
Analysis From the given equation, 

Primary dimensions of the universal ideal gas constant:

 { }
3

2
m Lpressure volume t L

mol temperature N TuR

 ×  ×  = = =   
× ×   

  

 
 
 

2

2

mL
t TN

  

Or, in exponent form, {Ru} = {m1 L2 t-2 T-1 N-1}. 
 
Discussion The standard value of Ru is 8314.3 J/kmol⋅K. You can verify that 
these units agree with the dimensions of the result. 

  
 
 
7-5 
Solution We are to write the primary dimensions of atomic weight.  
 
Analysis By definition, atomic weight is mass per mol, 

Primary dimensions of atomic weight: { } mass
mol

M  = = 
 

 
 
 

m
N

 (1) 

Or, in exponent form, {M} = {m1 N-1}. 
 
Discussion In terms of primary dimensions, atomic mass is not dimensionless, 
although many authors treat it as such. Note that mass and amount of matter are 
defined as two separate primary dimensions. 
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7-6 
Solution We are to write the primary dimensions of the universal ideal gas 
constant in the alternate system where force replaces mass as a primary dimension.  
 
Analysis From Newton’s second law, force equals mass times acceleration. 
Thus, mass is written in terms of force as 

Primary dimensions of mass in the alternate system:

 { }
2

2

force F Ftmass
acceleration LL/t

    = = =     
     

 (1) 

We substitute Eq. 1 into the results of Problem 7-4, 

Primary dimensions of the universal ideal gas constant:

 { }

2
2

2

2 2

Ft LmL L
Nt T Nt TuR

 
    = = =   

   
  

 
 
 

FL
TN

 (2) 

Or, in exponent form, {Ru} = {F1 L1 T-1 N-1}. 
 
Discussion The standard value of Ru is 8314.3 J/kmol⋅K. You can verify that 
these units agree with the dimensions of Eq. 2. 
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7-7 
Solution We are to write the primary dimensions of the specific ideal gas 
constant, and verify are result by comparing to the standard SI units of Rair.  
 
Analysis We can approach this problem two ways. If we have already worked 
through Problem 7-4, we can use our results. Namely,  

Primary dimensions of specific ideal gas constant:

 { }
2

2

gas

mL
Nt T

m
N

uR
R

M

 
    = = =   

   
  

 
 
 

2

2

L
t T

 (1) 

Or, in exponent form, {Rgas} = {L2 t-2 T-1}. Alternatively, we can use either form of 
the ideal gas law, 

Primary dimensions of specific ideal gas constant:

 { }
3

2

gas

m Lpressure volume t L
mass temperature m T

R

 ×  ×  = = =   
× ×   

  

 
 
 

2

2

L
t T

 (2) 

For air, Rair = 287.0 J/kg⋅K. We transform these units into primary dimensions, 

Primary dimensions of the specific ideal gas constant for air:

 { }

2

2

air

mL
J t287.0

kg×K m T
R

 
    = = =   

×   
  

 
 
 

2

2

L
t T

 (3) 

Equation 3 agrees with Eq. 1 and Eq. 2, increasing our confidence that we have 
performed the algebra correctly. 
 
Discussion Notice that numbers, like the value 287.0 in Eq. 3 have no influence 
on the dimensions. 
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7-8 
Solution We are to write the primary dimensions of torque and list its units.  
 
Analysis Torque is the product of a length and a force, 

Primary dimensions of torque: { } 2

lengthlength mass
time

M  = × = 
 

 
 
 

2

2

Lm
t

 (1) 

Or, in exponent form, { M } = {m1 L2 t-2}. The common units of torque are newton-
meter (SI) and inch-pound (English). In primary units, however, we write the 
primary SI units according to Eq. 1, 

Primary SI units: Units of torque = ⋅ 2 2kg m /s   

and in primary English units, 

Primary English units:  Units of torque = ⋅ 2 2lbm ft /s  

 
Discussion Since torque is the product of a force and a length, it has the same 
dimensions as energy. Primary units are not required for dimensional analysis, but are 
often useful for unit conversions and for verification of proper units when solving a 
problem. 
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7-9 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Energy is force times length (the same dimensions as work), 

Primary dimensions of energy:

 { } { } 2

mass lengthforce length length
time

E
 × = × = × =   

   

2

2

mL
t

 (1) 

Or, in exponent form, {E} = {m1 L2 t-2}. 
 

(b) Specific energy is energy per unit mass, 

Primary dimensions of specific energy:

 { }
2

2

energy mass length 1
mass masstime

e
   × = = × =     

   

2

2

L
t 

 (2) 

Or, in exponent form, {e} = { L2 t-2}. 
 

(c) Power is the rate of change of energy, i.e. energy per unit time, 

Primary dimensions of power:

 { }
2

2

energy mass length 1
time timetime

W
   × = = × =     

   

2

3

mL
t 

 (3) 

Or, in exponent form, {W } = {m1 L2 t-3}. 
 
Discussion In dimensional analysis it is important to distinguish between energy, 
specific energy, and power. 

  
 
 
7-10 
Solution We are to determine the primary dimensions of electrical voltage. 
 
Analysis From the hint, 

Primary dimensions of voltage:

 { }

2

3
mass length

power timevoltage
current current

 ×
      = = =     

    
  

2

3

mL
t I

 (1) 

Or, in exponent form, {E} = {m1 L2 t-3 I-1}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be 
expressed in terms of primary dimensions. 
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Solution We are to write the primary dimensions of electrical resistance.  
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Analysis From Ohm’s law, we see that resistance has the dimensions of voltage 
difference divided by electrical current, 

Primary dimensions of resistance:

 { }

2

3
mass length
time current

current
ER
I

 ×
   ∆   ×= = =     

    
  

2

3 2

mL
t I

  

Or, in exponent form, {R} = {m1 L2 t-3 I-2}, where we have also used the result of 
Problem 7-10. 
 
Discussion All dimensions can be written in terms of primary dimensions. 

  
 
 
7-12 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Acceleration is the rate of change of velocity, 

Primary dimensions of acceleration:

 { } velocity length 1
time time time

a      = = × =     
     2

L
t 

 (1) 

Or, in exponent form, {a} = { L1 t-2}. 
 

(b) Angular velocity is the rate of change of angle, 

Primary dimensions of angular velocity: { } angle 1
time time

ω     = = =    
    

1
t




 (2) 

Or, in exponent form, {ω} = { t-1}. 
 

(c) Angular acceleration is the rate of change of angular velocity, 

Primary dimensions of angular acceleration:

 { } angular velocity 1 1
time time time

α ω      = = = × =     
    2

1
t 

 (3) 

Or, in exponent form, {α} = { t-2}. 
 
Discussion In Part (b) we note that the unit of angle is radian, which is a 
dimensionless unit. Therefore the dimensions of angle are unity. 

  
 
 
7-13 
Solution We are to write the primary dimensions of angular momentum and list 
its units.  
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Primary dimensions of angular momentum:

 { } lengthlength mass
time

H
  = × × =   

   

2mL
t

 (1) 

Or, in exponent form, { H } = {m1 L2 t-1}. We write the primary SI units according 
to Eq. 1, 

Primary SI units: Units of angular momentum ⋅
=

2kg m
s

  

and in primary English units, 

Primary English units: Units of angular momentum ⋅
=

2lbm ft
s

  

 
Discussion Primary units are not required for dimensional analysis, but are often 
useful for unit conversions and for verification of proper units when solving a 
problem. 
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7-14 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Specific heat is energy per unit mass per unit temperature, 

Primary dimensions of specific heat at constant pressure:

 { }
2

2
mL

energy t
mass temperature m Tpc

 
      = = =     

× ×    
  

2

2

L
t T

 (1) 

Or, in exponent form, {cp} = { L2 t-2 T-1}. 
 

(b) Specific weight is density times gravitational acceleration, 

Primary dimensions of specific weight: { } 2

mass length
volume time

gρ    = =   
   2 2

m
L t 

 (2) 

Or, in exponent form, {ρg} = {m1 L-2 t-2}. 
 

(c) Specific enthalpy has dimensions of energy per unit mass, 

Primary dimensions of specific enthalpy: { }

2

2
mL

energy t
mass m

h

 
      = = =     

    
  

2

2

L
t

 (3) 

Or, in exponent form, {h} = { L2 t-2}. 
 
Discussion As a check, from our study of thermodynamics we know that dh = 
cpdT for an ideal gas. Thus, the dimensions of dh must equal the dimensions of cp 
times the dimensions of dT. Comparing Eqs. 1 and 3 above, we see that this is indeed 
the case. 
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7-15 
Solution We are to determine the primary dimensions of thermal conductivity.  
 
Analysis The primary dimensions of  are energy/time, and the primary 
dimensions of dT/dx are temperature/length. From the given equation, 

conductionQ

Primary dimensions of thermal conductivity:

 { }

2

3

2

mLenergy
time t
temperature L Tlength

length

k

   
       = =  =     

×    ×
     

3

mL
t T

 (1) 

Or, in exponent form, {k} = {m1 L1 t-3 T-1}. We obtain a value of k from a reference 
book. E.g. kcopper = 401 W/m⋅K. These units have dimensions of 
power/length⋅temperature. Since power is energy/time, we see immediately that Eq. 1 
is correct. Alternatively, we can transform the units of k into primary units, 

Primary SI units of thermal conductivity:

 copper 2

W N m kg m401 401
m K s W N s

k ⋅  = =   ⋅   3

kg  m
s K

 (2) 

 
Discussion We have used the principle of dimensional homogeneity to determine 
the primary dimensions of k. Namely, we utilized the fact that the dimensions of both 
terms of the given equation must be identical. 
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7-16 
Solution We are to determine the primary dimensions of each variable.  
 
Analysis  
(a) Heat generation rate is energy per unit volume per unit time, 

Primary dimensions of heat generation rate:

 { }

2

2

3

mL
energy t

volume time L t
g

 
    = = =     

×   
  

3

m
Lt 

 (1) 

Or, in exponent form, { g } = {m1 L-1 t-3}. 
 

(b) Heat flux is energy per unit area per unit time, 

Primary dimensions of heat flux: { }

2

2

2

mL
energy t

area time L t
q

 
    = = =     

×   
  

3

m
t 

 (2) 

Or, in exponent form, { } = {m1 t-3}. q
 

(c) Heat flux is energy per unit area per unit time per unit temperature, 

Primary dimensions of heat transfer coefficient:

 { }

2

2

2

mL
energy t

area time temperature L t T
h

 
     = = =     

× × × ×     
  

3

m
t T

 (3) 

Or, in exponent form, {h} = {m1 t-3 T-1}. 
 
Discussion In the field of heat transfer it is critical that one be careful with the 
dimensions (and units) of heat transfer variables. 
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7-17 
Solution We are to choose three properties or constants and write out their 
names, their SI units, and their primary dimensions.  
 
Analysis There are many options. For example, 
 

Students may choose cv (specific heat at constant volume). The units are kJ/kg⋅K, 
which is energy per mass per temperature. Thus, 

Primary dimensions of specific heat at constant volume:

 { }

2

2

mL
energy t

mass temperature m Tvc

 
      = = =     

× ×    
  

2

2

L
t T

 (1) 

Or, in exponent form, {cv} = { L2 t-2 T-1}. 
 

Students may choose v (specific volume). The units are m3/kg, which is volume per 
mass. Thus, 

Primary dimensions of specific volume: { } volume
mass

v
  = =  

   

3L
m   (2) 

Or, in exponent form, {v} = {m-1 L3}. 
 

Students may choose hfg (latent heat of vaporization). The units are kJ/kg, which is 
energy per mass. Thus, 

Primary dimensions of latent heat of vaporization:

 { }
2

2

mL
energy t
mass mfgh

 
      = = =     

    
  

2

2

L
t

 (3) 

Or, in exponent form, {hfg} = {L2 t-2}. (The same dimensions hold for hf and hg.) 
 

Students may choose sf (specific entropy of a saturated liquid). The units are kJ/kg⋅K, 
which is energy per mass per temperature. Thus, 

Primary dimensions of specific entropy of a saturated liquid:

 { }
2

2

mL
energy t

mass temperature m Tfs

 
      = = =     

× ×    
  

2

2

L
t T

 (4) 

Or, in exponent form, {sf} = { L2 t-2 T-1}. (The same dimensions hold for sfg and 
sg.) 
 
Discussion Students’ answers will vary. There are some other choices. 
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Solution We are to choose three properties or constants and write out their 
names, their SI units, and their primary dimensions.  
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Analysis There are many options. For example, 
 

Students may choose cv (specific heat at constant volume). The units are Btu/lbm⋅R, 
which is energy per mass per temperature. Thus, 

Primary dimensions of specific heat at constant volume:

 { }

2

2

mL
energy t

mass temperature m Tvc

 
      = = =     

× ×    
  

2

2

L
t T

 (1) 

Or, in exponent form, {cv} = { L2 t-2 T-1}. 
 

Students may choose v (specific volume). The units are ft3/lbm, which is volume per 
mass. Thus, 

Primary dimensions of specific volume: { } volume
mass

v
  = =  

   

3L
m   (2) 

Or, in exponent form, {v} = {m-1 L3}. 
 

Students may choose hfg (latent heat of vaporization). The units are Btu/lbm, which is 
energy per mass. Thus, 

Primary dimensions of latent heat of vaporization:

 { }
2

2

mL
energy t
mass mfgh

 
      = = =     

    
  

2

2

L
t

 (3) 

Or, in exponent form, {hfg} = {L2 t-2}. (The same dimensions hold for hf and hg.) 
 

Students may choose sf (specific entropy of a saturated liquid). The units are 
Btu/lbm⋅R, which is energy per mass per temperature. Thus, 

Primary dimensions of specific entropy of a saturated liquid:

 { }
2

2

mL
energy t

mass temperature m Tfs

 
      = = =     

× ×    
  

2

2

L
t T

 (4) 

Or, in exponent form, {sf} = { L2 t-2 T-1}. (The same dimensions hold for sfg and 
sg.) 
 
Discussion Students’ answers will vary. There are some other choices. 
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Analysis The law of dimensional homogeneity states that every additive term 
in an equation must have the same dimensions. As a simple counter example, an 
equation with one term of dimensions length and another term of dimensions 
temperature would clearly violate the law of dimensional homogeneity – you cannot 
add length and temperature. All terms in the equation must have the same dimensions. 
 
Discussion If in the solution of an equation you realize that the dimensions of two 
terms are not equivalent, this is a sure sign that you have made a mistake somewhere! 
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Solution We are to determine the primary dimensions of the gradient operator, 
and then verify that primary dimensions of each additive term in the equation are the 
same. 
 
Analysis  
(a) By definition, the gradient operator is a three-dimensional derivative operator. For 
example, in Cartesian coordinates, 

Gradient operator in Cartesian coordinates:

 , , i j k
x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂
∇ = = + + ∂ ∂ ∂ ∂ ∂ ∂ 

  

Therefore its dimensions must be 1/length. Thus, 

Primary dimensions of the gradient operator: { }  ∇ =  
 

1
L

  

Or, in exponent form, {∇ } = { L-1}. 
 

(b) Similarly, the primary dimensions of a time derivative (∂/∂t) are 1/time. Also, the 
primary dimensions of velocity are length/time, and the primary dimensions of 
acceleration are length/time2. Thus each term in the given equation can be written in 
terms of primary dimensions, 

{ } 2

length
time

a  =  
 

 { } 2

L
t

a  =  
 

 

2

length
lengthtime

time time
V
t

 
  ∂     = =     ∂      
  

 2

L
t

V
t

 ∂    =   
∂    

 

( ){ } 2

length 1 length length
time length time time

V V
   ⋅∇ = × × =   

  
 ( ){ } 2

L
t

V V  ⋅∇ =  
 

 

Indeed, all three additive terms have the same dimensions, namely {L1 t-2}. 
 

 
Discussion If the dimensions of any of the terms were different from the others, it 
would be a sure sign that an error was made somewhere in deriving or copying the 
equation. 
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Solution We are to determine the primary dimensions of each additive term in 
the equation, and we are to verify that the equation is dimensionally homogeneous.  
 
Analysis The primary dimensions of the time derivative (∂/∂t) are 1/time. The 
primary dimensions of the gradient vector are 1/length, and the primary dimensions of 
velocity are length/time. Thus each term in the equation can be written in terms of 
primary dimensions, 

2
mass×length

force time
mass mass

F
m

 
      = = 

     
     

  

 2

L
t

F
m

     =   
   

 

length
time
time

V
t

 
  ∂   =   ∂    
  

 2

L
t

V
t

 ∂    =   
∂    

 

( ){ } length 1 length
time length time

V V
 

⋅∇ = × × 
 

 ( ){ } 2

L
t

V V  ⋅∇ =  
 

 

Indeed, all three additive terms have the same dimensions, namely {L1 t-2}. 
 
Discussion The dimensions are, in fact, those of acceleration. 
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Solution We are to determine the primary dimensions of each additive term in 
Eq. 1, and we are to verify that the equation is dimensionally homogeneous. 
 
Analysis The primary dimensions of the material derivative (D/Dt) are 1/time. 
The primary dimensions of volume are length3, and the primary dimensions of 
velocity are length/time. Thus each term in the equation can be written in terms of 
primary dimensions, 

3

3

1 1 length
time timelength

DV
V Dt

  1  = × = 
     
    

 1 1
t

DV
V Dt

  =  
  





 

length
1time

length time
u
x

 
 ∂   = = 

     
∂   

  


 1
t

u
x
∂   =   
∂   

 

length
1time

length time
v
y

 
  ∂   = =     

∂     
  

 1
t

v
y

 ∂  =   
∂   

 

length
1time

length time
w
z

 
 ∂   = = 

     
∂   

  


 1
t

w
z

∂   =   
∂   

 

Indeed, all four additive terms have the same dimensions, namely {t-1}. 
 
Discussion If the dimensions of any of the terms were different from the others, it 
would be a sure sign that an error was made somewhere in deriving or copying the 
equation. 

  
 
 

7-13 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 7 – Dimensional Analysis 

7-23 
Solution We are to determine the primary dimensions of each additive term, 
and we are to verify that the equation is dimensionally homogeneous. 
 
Analysis The primary dimensions of the velocity components are length/time. 
The primary dimensions of coordinates r and z are length, and the primary dimensions 
of coordinate θ are unity (it is a dimensionless angle). Thus each term in the equation 
can be written in terms of primary dimensions, 

( )
lengthlength1 1 time

length length time
rru

r r

 
   ∂ 1    = × =    

∂      
  

  
( )1 1

t
rru

r r
 ∂    = 

∂    
   

length
1 1 time

length 1 time
u

r
θ

θ

 
 ∂  1  == × =    

∂     
  

  1 1
t

u
r

θ

θ
∂   =  
∂   

  

length
1time

length time
zu

z

 
 ∂    = =     

∂     
  

 1
t

zu
z

∂   =   
∂   

 

Indeed, all three additive terms have the same dimensions, namely {t-1}. 
 
Discussion If the dimensions of any of the terms were different from the others, it 
would be a sure sign that an error was made somewhere in deriving or copying the 
equation. 
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Solution We are to determine the primary dimensions of each additive term in 
the equation, and we are to verify that the equation is dimensionally homogeneous.  
 
Analysis The primary dimensions of heat transfer rate are energy/time. The 
primary dimensions of mass flow rate are mass/time, and those of specific heat are 
energy/mass⋅temperature, as found in Problem 7-14. Thus each term in the equation 
can be written in terms of primary dimensions, 

{ }
2

22

3

mL
energy mLt
time t t

Q

 
      = = =     

    
  

 { }
2

3

mL
t

Q
 

=  
 

 

{ }out

2

22

3

mass energy temperature
time mass temperature

mL
m mLt              T
t m T t

pmC T
 

= × × 
× 

 
    = × × =   

×   
  

 { }
2

out 3

mL
tpmC T

 
=  
 

 

{ }in

2

22

3

mass energy temperature
time mass temperature

mL
m mLt              T
t m T t

pmC T
 

= × × × 
 
    = × × =   

×   
  

 { }
2

in 3

mL
tpmC T

 
=  
 

 

Indeed, all three additive terms have the same dimensions, namely {m1 L2 t-3}. 
 
Discussion We could also have left the temperature difference in parentheses as a 
temperature difference (same dimensions as the individual temperatures), and treated 
the equation as having only two terms. 
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Solution We are to determine the primary dimensions of each additive term, 
and we are to verify that the equation is dimensionally homogeneous.  
 
Analysis The primary dimensions of the time derivative (d/dt) are 1/time. The 
primary dimensions of density are mass/length3, those of volume are length3, those of 
area are length2, and those of velocity are length/time. The primary dimensions of unit 
vector n  are unity, i.e. {1} (in other words n  has no dimensions). Finally, the 
primary dimensions of b, which is defined as B per unit mass, are {B/m}. Thus each 
term in the equation can be written in terms of primary dimensions, 

sys

time
dB B

dt
   =   

  
 sys

t
dB B

dt
   =   

  
 

3
3CV

1 mass length
time masslength

d BbdV
dt

ρ
   = × × ×  

   
∫   

CV t
d BbdV
dt

ρ  = 
 ∫

 
 
 

 

{ } 2
r 3CS

mass length 1 length
mass timelength

BbV ndAρ
 

⋅ = × × × × 
 

∫  { }rCS t
BbV ndAρ  ⋅ =  

 ∫  

Indeed, all three additive terms have the same dimensions, namely {B t-1}. 
 
Discussion The RTT for property B has dimensions of rate of change of B. 
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Solution We are to determine the primary dimensions of the first three additive 
term, and we are to verify that those terms are dimensionally homogeneous. Then we 
are to evaluate the dimensions of the adsorption coefficient. 
 
Analysis The primary dimensions of the time derivative (d/dt) are 1/time. 
Those of As are length2, those of V are length3, those of c are mass/length3, and those 
of V  are length3/time. Thus the primary dimensions of the first three terms are 

3
3

mass
masslengthlength

time time
dcV
dt

 
    = = 

     
   

  


 m
t

dcV
dt

  =  
  





 

{ } mass
time

S  =  
 

 { } m
t

S  =  
 

 

{ }
3

3

length mass mass
time timelength

Vc
   = × =   

  
 { } m

t
Vc  =  

 
 

Indeed, the first three additive terms have the same dimensions, namely {m1 t-1}. 
Since the equation must be dimensionally homogeneous, the last term must have the 
same dimensions as well. We use this fact to find the dimensions of kw, 

{ } { }
2

3

mass mass
mass time time        

masstime length
length

s w w
s

cA k k
cA

  
       = = =    

 


   ×
      

 { }wk  =  
 

L
t

 

Or, in exponent form, {kw} = {L1 t-1}. The dimensions of wall adsorption 
coefficient are those of velocity. 
 
Discussion In fact, some authors call kw a “deposition velocity”. 
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Nondimensionalization of Equations 
 
7-27C 
Solution We are to give the primary reason for nondimensionalizing an 
equation.  
 
Analysis The primary reason for nondimensionalizing an equation is to reduce 
the number of parameters in the problem. 
 
Discussion As shown in the examples in the text, nondimensionalization of an 
equation reduces the number of independent parameters in the problem, simplifying 
the analysis. 

  
 
 
7-28 
Solution We are to nondimensionalize all the variables, and then re-write the 
equation in nondimensionalized form. 
 
Assumptions 1 The air in the room is well mixed so that c is only a function of 
time. 
 
Analysis  

(a) We nondimensionalize the variables by inspection according to their dimensions, 

Nondimensionalized variables:

 
2

3 3 2
limit limit

* ,  * ,  * ,  * ,  * ,  and  *s
s w w

AV c V LV c t t A k k S
cL L L V c

= = = = = =
S

V
  

 

(b) We substitute these into the equation to generate the nondimensionalized equation, 

 
( ) ( )( )limit3 2

limit limit limit 23

*
* * * * *

*
s w

d c c VV L S c V Vc c c c A L k
LLd t

V

 
= − − 

  
 
 

* 


 
(1) 

We notice that every term in Eq. 1 contains the quantity limitVc . We divide every 
term by this quantity to get a nondimensionalized form of the equation, 

Nondimensionalized equation: ** * * * *
*

*s w
dcV S c c A
dt

= − − k   

No dimensionless groups have arisen in this nondimensionalization. 
 
Discussion Since all the characteristic scales disappear, no dimensionless groups 
have arisen. Since there are no dimensionless parameters, one solution in 
nondimensionalized variables is valid for all combinations of L, V , and climit. 

  
 
 

7-18 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 7 – Dimensional Analysis 

7-29 
Solution We are to nondimensionalize the equation, and identify the 
dimensionless parameters that appear in the nondimensionalized equation. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 
 
Analysis We plug the nondimensionalized variables into the equation. For 
example, u = u*U and x = x*L in the first term. The result is 

 * * * 0
* * *

U u U v U w
L x L y L z
∂ ∂ ∂

+ +
∂ ∂ ∂

=   

or, after simplifying, 

Nondimensionalized incompressible flow relationship:

 * * * 0
* * *

u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

There are no nondimensional parameters in the nondimensionalized equation. 
The original equation comes from pure kinematics – there are no fluid properties 
involved in the equation, and therefore it is not surprising that no nondimensional 
parameters appear in the nondimensionalized form of the equation, Eq. 1.  
 
Discussion We show in Chap. 9 that the equation given in this problem is the 
differential equation for conservation of mass for an incompressible flow field – the 
incompressible continuity equation. 
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Solution We are to nondimensionalize the equation of motion and identify the 
dimensionless parameters that appear in the nondimensionalized equation. 
 
Analysis We plug in the nondimensionalized variables. For example, u = u*V 
and x = x*L in the first term. The result is 

 
3

3

1 * * *
* * * *

L f DV V u V v V w
V Dt L x L y L zL

∂ ∂ ∂
= + +

∂ ∂ ∂
*
*

  

or, after simplifying, 

 1 * * *
* * * *

fL DV u v w
V V Dt x y z

∂ ∂ ∂  = + +  ∂ ∂ ∂ 

*
*

 (1) 

We recognize the nondimensional parameter in parentheses in Eq. 1 as St, the 
Strouhal number. We can re-write Eq. 1 as 

Nondimensionalized oscillating compressible flow relationship:

 1 * * *St
* * * *

DV u v w
V Dt x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

*
*

  

 
Discussion We show in Chap. 9 that the given equation of motion is the 
differential equation for conservation of mass for an unsteady, compressible flow 
field – the general continuity equation. We may also use angular frequency ω 
(radians per second) in place of physical frequency f (cycles per second), with the 
same result. 
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7-31 
Solution We are to determine the primary dimensions of the stream function, 
nondimensionalize the variables, and then re-write the definition of ψ in 
nondimensionalized form. 
 
Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-
y plane. 
 
Analysis (a) We use that fact that all equations must be dimensionally 
homogeneous. We solve for the dimensions of ψ, 

Primary dimensions of stream function: { } { } { } L L
t

u yψ
  = × = × =  

   

2L
t    

Or, in exponent form, {ψ} = {L2 t-1}. 
 

(b) We nondimensionalize the variables by inspection according to their dimensions, 

Nondimensionalized variables:

 2*         *         *         *         *x y t tx y u u v v
L L L L

ψ ψ= = = = =
t
L

  

 

(c) We generate the nondimensionalized equations, 

 
( ) ( )

2 2

* *
*         *

* *

L L
t tL Lu v

t y L t x L

ψ ψ
   

∂ ∂   
      = = −   ∂ ∂   

  

We notice that every term in both parts of the above equation contains the ratio L/t. 
We divide every term by L/t to get the final nondimensionalized form of the 
equations, 

Nondimensionalized stream function equations: * **         *
* *

u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

  

No dimensionless groups have arisen in this nondimensionalization. 
 
Discussion Since all the nondimensionalized variables scale with L and t, no 
dimensionless groups have arisen. 

  
 
 

7-21 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 7 – Dimensional Analysis 

7-32 
Solution We are to nondimensionalize the equation of motion and identify the 
dimensionless parameters that appear in the nondimensionalized equation. 
 
Analysis We plug the nondimensionalized variables into the equation. For 
example, t = t*/ω and V V V *∞=  in the first term on the right hand side. The result is 

 ( ) ( )
2

2 */ * * *
*

V UL F m U V V
t L

ω ω ∂
= + ⋅∇

∂
*   

or, after simplifying by multiplying each term by L/ V∞
2, 

 ( ) ( )
2

*/ * * *
*

L L V *F m V
V V t
ω ω

∞ ∞

    ∂
= + ⋅∇    ∂   

V  (1) 

We recognize the nondimensional parameter in parentheses in Eq. 1 as St, the 
Strouhal number. We re-write Eq. 1 as 

Nondimensionalized Newton’s second law for incompressi le oscillatory 

flow: 

b

( ) ( ) ( ) ( )2 *St / * St * * *
*

VF m V
t

∂
= + ⋅∇

∂
V   

 
Discussion We used angular frequency ω in this problem. The same result would 
be obtained if we used physical frequency. Equation 1 is the basis for forming the 
differential equation for conservation of linear momentum for an unsteady, 
incompressible flow field. 

  
 
7-33 
Solution We are to nondimensionalize the Bernoulli equation and generate an 
expression for the pressure coefficient.  
 
Assumptions 1 The flow is incompressible. 2 Gravitational terms in the Bernoulli 
equation are negligible compared to the other terms. 
 
Analysis We nondimensionalize the equation by dividing each term by the 

dynamic pressure, 21
2

Vρ ∞ , 

Nondimensionalization: 
2

2
2 2

1
1 1
2 2

PP V
VV Vρ ρ

∞

∞
∞ ∞

+ = +   

Rearranging, 

Pressure coefficient: 
2

2
2

1
1
2

p
P P VC

VVρ

∞

∞
∞

−
= = −   

 
Discussion Pressure coefficient is a useful dimensionless parameter that is 
inversely related to local air speed – as local air speed V increases, Cp decreases. 
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Dimensional Analysis and Similarity 
 
7-34C 
Solution We are to list the three primary purposes of dimensional analysis. 
 
Analysis The three primary purposes of dimensional analysis are: 

1. To generate nondimensional parameters that help in the design of 
experiments and in the reporting of experimental results. 

2. To obtain scaling laws so that prototype performance can be predicted 
from model performance. 

3. To (sometimes) predict trends in the relationship between parameters. 
 
Discussion Dimensional analysis is most useful for difficult problems that cannot 
be solved analytically. 

  
 
 
7-35C 
Solution We are to list and describe the three necessary conditions for complete 
similarity between a model and a prototype. 
 
Analysis The three necessary conditions for complete similarity between a 
model and a prototype are: 

1. Geometric similarity – the model must be the same shape as the prototype, 
but scaled by some constant scale factor. 

2. Kinematic similarity – the velocity at any point in the model flow must be 
proportional (by a constant scale factor) to the velocity at the corresponding 
point in the prototype flow. 

3. Dynamic similarity – all forces in the model flow scale by a constant factor 
to corresponding forces in the prototype flow. 

 
Discussion Complete similarity is achievable only when all three of the above 
similarity conditions are met. 
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Solution For a scale model of a submarine being tested in air, we are to 
calculate the wind tunnel speed required to achieve similarity with the prototype 
submarine that moves through water at a given speed.  
 
Assumptions 1 Compressibility of the air is assumed to be negligible. 2 The wind 
tunnel walls are far enough away so as to not interfere with the aerodynamic drag on 
the model sub. 3 The model is geometrically similar to the prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and 
µ = 1.138 × 10-3 kg/m⋅s. For air at T = 25oC and atmospheric pressure, ρ = 1.184 
kg/m3 and µ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Similarity is achieved when the Reynolds number of the model is 
equal to that of the prototype, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

µ µ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

 

( ) ( )

p pm
m p

p m m

5 3

3 3

1.849 10  kg/m s 999.1 kg/m   0.560 m/s 8
1.138 10  kg/m s 1.184 kg/m

L
V V

L
ρµ

µ ρ
−

−

   
=        

  × ⋅
= =  × ⋅  

61.4 m/s

  

 
Discussion At this air temperature, the speed of sound is around 346 m/s. Thus 
the Mach number in the wind tunnel is equal to 61.4/346 = 0.177. This is sufficiently 
low that the incompressible flow approximation is reasonable. 
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Solution For a scale model of a submarine being tested in air, we are to 
calculate the wind tunnel speed required to achieve similarity with the prototype 
submarine that moves through water at a given speed.  
 
Assumptions 1 Compressibility of the air is assumed to be negligible. 2 The wind 
tunnel walls are far enough away so as to not interfere with the aerodynamic drag on 
the model sub. 3 The model is geometrically similar to the prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and 
µ = 1.138 × 10-3 kg/m⋅s. For air at T = 25oC and atmospheric pressure, ρ = 1.184 
kg/m3 and µ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Similarity is achieved when the Reynolds number of the model is 
equal to that of the prototype, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

µ µ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

 

( )

p pm
m p

p m m

5 3

3 3

1.849 10  kg/m s 999.1 kg/m   0.560 m/s 24
1.138 10  kg/m s 1.184 kg/m

L
V V

L
ρµ

µ ρ
−

−

   
=        

  × ⋅
= =  × ⋅  

184 m/s

 

At this air temperature, the speed of sound is around 346 m/s. Thus the Mach 
number in the wind tunnel is equal to 184/346 = 0.532. The Mach number is 
sufficiently high that the incompressible flow approximation is not 
reasonable. The wind tunnel should be run at a flow speed at which the Mach 
number is less than one-third of the speed of sound. At this lower speed, the 
Reynolds number of the model will be too small, but the results may still be 
usable, either by extrapolation to higher Re, or if we are fortunate enough to 
have Reynolds number independence, as discussed in Section 7-5.  
 
Discussion It is also unlikely that a small instructional wind tunnel can achieve 
such a high speed.  
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Solution For a prototype parachute and its model we are to calculate drag 
coefficient, and determine the wind tunnel speed that ensures dynamic similarity. 
Then we are to estimate the aerodynamic drag on the model. 
 
Assumptions 1 The model is geometrically similar to the prototype. 
 
Properties For air at 60oF and standard atmospheric pressure, ρ = 0.07633 lbm/ft3 
and µ = 1.213 × 10-5 lbm/ft⋅s. 
 
Analysis  (a) The aerodynamic drag on the prototype parachute is equal to the 
total weight. We can then easily calculate the drag coefficient CD, 

Drag coefficient:

 

( )( ) ( )
,p

2 21
p p p2 231

2

230 lbf 32.2 lbm ft
lbf s24 ft

0.07633 lbm/ft 20 ft/s
4

D
D

F
C

V Aρ
π

 = = = 
 

1.072  

 

(b) We must match model and prototype Reynolds numbers in order to achieve 
dynamic similarity, 

Similarity: p p pm m m
m p

m p

Re Re
V LV L ρρ

µ µ
= = =  (1) 

We solve Eq. 1 for the unknown wind tunnel speed, 

Wind tunnel speed:

 ( )( )( )( )p pm
m p

p m m

20 ft/s 1 1 12
L

V V
L

ρµ
µ ρ

   
= =       

240 ft/s=  (2) 

 

(c) As discussed in the text, if the fluid is the same and dynamic similarity between 
the model and the prototype is achieved, the aerodynamic drag force on the model is 
the same as that on the prototype. Thus, 

Aerodynamic drag on model:  ,m ,pD DF F= = 230 lbf (3) 

 
Discussion We should check that the wind tunnel speed of Eq. 2 is not too high 
that the incompressibility approximation becomes invalid. The Mach number at this 
speed is about 240/1120 = 0.214. Since this is less than 0.3, compressibility is not an 
issue in this model test. The drag force on the model is quite large, and a fairly hefty 
drag balance must be available to measure such a large force. 
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Solution We are to discuss why one would pressurize a wind tunnel.  
 
Analysis As we see in some of the example problems and homework problems 
in this chapter, it is often difficult to achieve a high-enough wind tunnel speed to 
match the Reynolds number between a small model and a large prototype. Even if we 
were able to match the speed, the Mach number would often be too high. A 
pressurized wind tunnel has higher density air. At the same Reynolds number, the 
larger density leads to a lower air speed requirement. In other words, a pressurized 
wind tunnel can achieve higher Reynolds numbers for the same scale model. 
 If the pressure were to be increased by a factor of 1.5, the air density would 
also go up by a factor of 1.5 (ideal gas law), assuming that the air temperature 
remains constant. Then the Reynolds number, Re = ρVL/µ, would go up by 
approximately 1.5. Note that we are also assuming that the viscosity does not change 
significantly with pressure, which is a reasonable assumption. 
 
Discussion The speed of sound is not a strong function of pressure, so Mach 
number is not affected significantly by pressurizing the wind tunnel. However, the 
power requirement for the wind tunnel blower increases significantly as air density is 
increased, so this must be taken into account when designing the wind tunnel. 

  
 
 
7-40 
Solution We are to estimate the drag on a prototype submarine in water, based 
on aerodynamic drag measurements performed in a wind tunnel.  
 
Assumptions 1 The model is geometrically similar. 2 The wind tunnel is run at 
conditions which ensure similarity between model and prototype. 
 
Properties For water at T = 15oC and atmospheric pressure, ρ = 999.1 kg/m3 and 
µ = 1.138 × 10-3 kg/m⋅s. For air at T = 25oC and atmospheric pressure, ρ = 1.184 
kg/m3 and µ = 1.849 × 10-5 kg/m⋅s. 
 
Analysis Since the Reynolds numbers have been matched, the 
nondimensionalized drag coefficient of the model equals that of the prototype, 

 ,p,m
2 2 2 2

m m m p p p

DD FF
V L V Lρ ρ

=  (1) 

We solve Eq. 1 for the unknown aerodynamic drag force on the prototype, FD,p, 

 ( ) ( )
2 2 2

2p p p
,p ,m

m m m

999.1 kg/m s 0.560 m/s2.3 N 8
1.184 kg/m s 61.4 m/sD D

V L
V L

ρ
ρ

      ⋅  = =       ⋅       
10.3 NF F  =

where we have used the wind tunnel speed calculated in Problem 7-36. 
 
Discussion Although the prototype moves at a much slower speed than the model, 
the density of water is much higher than that of air, and the prototype is eight times 
larger than the model. When all of these factors are combined, the drag force on the 
prototype is much larger than that on the model. 
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7-41E 
Solution The concept of similarity will be utilized to determine the speed of the 
wind tunnel. 
 
Assumptions 1 Compressibility of the air is ignored (the validity of this assumption 
will be discussed later). 2 The wind tunnel walls are far enough away so as to not 
interfere with the aerodynamic drag on the model car. 3 The model is geometrically 
similar to the prototype. 4 Both the air in the wind tunnel and the air flowing over the 
prototype car are at standard atmospheric pressure. 
 
Properties For air at T = 25oC and atmospheric pressure, ρ = 1.184 kg/m3 and µ 
= 1.849 × 10-5 kg/m⋅s. 
 
Analysis Since there is only one independent Π in this problem, similarity is 
achieved if Π2,m = Π2,p, where Π2 is the Reynolds number. Thus, we can write 

 p p pm m m
2,m m 2,p p

m p

Re Re
V LV L ρρ

µ µ
Π = = = Π = =   

which can be solved for the unknown wind tunnel speed for the model tests, Vm, 

 ( ) ( ) ( ) ( )p pm
m p

p m m

60.0 mph 1 1 4
L

V V
L

ρµ
µ ρ

   
= = =       

240 mph   

 
Thus, to ensure similarity, the wind tunnel should be run at 240 miles per hour (to 
three significant digits). 
 
Discussion This speed is quite high, and the wind tunnel may not be able to run at 
that speed. We were never given the actual length of either car, but the ratio of Lp to 
Lm is known because the prototype is four times larger than the scale model. The 
problem statement contains a mixture of SI and English units, but it does not matter 
since we use ratios in the algebra. 
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7-42E 
Solution We are to estimate the drag on a prototype car, based on aerodynamic 
drag measurements performed in a wind tunnel.  
 
Assumptions 1 The model is geometrically similar. 2 The wind tunnel is run at 
conditions which ensure similarity between model and prototype. 
 
Properties For air at T = 25oC and atmospheric pressure, ρ = 1.184 kg/m3 and µ 
= 1.849 × 10-5 kg/m⋅s. 
 
Analysis Following the example in the text, since the Reynolds numbers have 
been matched, the nondimensionalized drag coefficient of the model equals that of the 
prototype, 

 ,p,m
2 2 2 2

m m m p p p

DD FF
V L V Lρ ρ

=  (1) 

We solve Eq. 1 for the unknown aerodynamic drag force on the prototype, FD,p, 

 ( )( ) ( )
2 2 2

2p p p
,p ,m

m m m

60.0 mph36.5 lbf 1 4
240 mphD D

V L
F F

V L
ρ
ρ

      
= =      

     
36.5 lbf=  

where we have used the wind tunnel speed calculated in Problem 7-41E. 
 
Discussion Since the air properties of the wind tunnel are identical to those of the 
air flowing around the prototype car, it turns out that the aerodynamic drag force on 
the prototype is the same as that on the model. This would not be the case if the wind 
tunnel air were at a different temperature or pressure compared to that of the 
prototype. 
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Solution We are to discuss whether cold or hot air in a wind tunnel is better, 
and we are to support our answer by comparing air at two given temperatures.  
 
Properties For air at atmospheric pressure and at T = 10oC, ρ = 1.246 kg/m3 and 
µ = 1.778 × 10-5 kg/m⋅s. At T = 50oC, ρ = 1.092 kg/m3 and µ = 1.963 × 10-5 kg/m⋅s. 
 
Analysis As we see in some of the example problems and homework problems 
in this chapter, it is often difficult to achieve a high-enough wind tunnel speed to 
match the Reynolds number between a small model and a large prototype. Even if we 
were able to match the speed, the Mach number would often be too high. Cold air has 
higher density than warm air. In addition, the viscosity of cold air is lower than that of 
hot air. Thus, at the same Reynolds number, the colder air leads to a lower air speed 
requirement. In other words, a cold wind tunnel can achieve higher Reynolds 
numbers than can a hot wind tunnel for the same scale model, all else being 
equal. We support our conclusion by comparing air at two temperatures, 

Comparison of Reynolds numbers:

 

cold
3 5

cold cold cold hot
3 5

hothot hot cold

hot

Re 1.246 kg/m 1.963 10  kg/m s
Re 1.092 kg/m 1.778 10  kg/m s

VL

VL

ρ
µ ρ µ
ρ ρ µ
µ

−

−

× ⋅
= = = =

× ⋅
1.26   

Thus we see that the colder wind tunnel can achieve approximately 26% higher 
Reynolds number, all else being equal. 
 
Discussion There are other issues however. First of all, the denser air of the cold 
wind tunnel is harder to pump – the cold wind tunnel may not be able to achieve the 
same wind speed as the hot wind tunnel. Furthermore, the speed of sound is 
proportional to the square root of temperature. Thus, at colder temperatures, the Mach 
number is higher than at warmer temperatures for the same value of V, and 
compressibility effects are therefore more significant at lower temperatures. 
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7-44 
Solution We are to calculate the speed and angular velocity (rpm) of a spinning 
baseball in a water channel such that flow conditions are dynamically similar to that 
of the actual baseball moving and spinning in air.  
 
Properties For air at T = 20oC and atmospheric pressure, ρ = 1.204 kg/m3 and µ 
= 1.825 × 10-5 kg/m⋅s. For water at T = 20oC and atmospheric pressure, ρ = 998.0 
kg/m3 and µ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis The model (in the water) and the prototype (in the air) are actually the 
same baseball, so their characteristic lengths are equal, Lm = Lp. We match Reynolds 
number, 

 p p pm m m
m p

m p

Re Re
V LV L ρρ

µ µ
= = =  (1) 

and solve for the required water tunnel speed for the model tests, Vm, 

 

( ) ( )

p pm
m p

p m m

3 3

5 3

1.002 10  kg/m s 1.204 kg/m    80.0 mph 1
1.825 10  kg/m s 998.0 kg/m

L
V V

L
ρµ

µ ρ
−

−

   
=        

  × ⋅
= =  × ⋅  

5.30 mph

 (2) 

We also match Strouhal numbers, recognizing that  is proportional to f, n

 p pm m
m p

m p

St St
f Lf L

V V
= = =      →     p pm m

m p

n Ln L
V V

=  (3) 

from which we solve for the required spin rate in the water tunnel,  

 ( )( )p m
m p

m p

5.30 mph300 rpm 1
80.0 mph

L V
n n

L V

    
= = =         

19.9 rpm  (4) 

 
Discussion Because of the difference in fluid properties between air and water, 
the required water tunnel speed is much lower than that in air. In addition, the spin 
rate is much lower, making flow visualization easier. 
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Dimensionless Parameters and the Method of Repeating Variables 
 
7-45 
Solution We are to verify that the Archimedes number is dimensionless.  
 
Analysis Archimedes number is defined as 

Archimedes number: ( )
3

2Ar s
s

gLρ
ρ ρ

µ
= −  (1) 

We know the primary dimensions of density, gravitational acceleration, length, and 
viscosity. Thus, 

Primary dimensions of Archimedes number: { } { }
3

3 2

2 3

2 2

m L L mL tAr
m L
L t

 
  = = 
 
  

1  (2) 

 
Discussion If the primary dimensions were not unity, we would assume that we 
made an error in the dimensions of one or more of the parameters. 
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Solution We are to verify that the Grashof number is dimensionless.  
 
Analysis Grashof number is defined as 

Grashof number: 
3 2

2Gr
g T Lβ ρ

µ
∆

=  (1) 

We know the primary dimensions of density, gravitational acceleration, length, 
temperature, and viscosity. The dimensions of coefficient of thermal expansion β are 
1/temperature. Thus, 

Primary dimensions of Grashof number: { } { }

2
3

2 6

2

2 2

L 1 mTL
Tt LGr

m
L t

 
  = = 
 
  

1  (2) 

 
Discussion If the primary dimensions were not unity, we would assume that we 
made an error in the dimensions of one or more of the parameters. 
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7-47 
Solution We are to verify that the Rayleigh number is dimensionless, and 
determine what other established nondimensional parameter is formed by the ratio of 
Ra and Gr.  
 
Analysis Rayleigh number is defined as 

Rayleigh number: 
3 2

Ra pg T L c
k

β ρ
µ

∆
=  (1) 

We know the primary dimensions of density, gravitational acceleration, length, 
temperature, and viscosity. The dimensions of coefficient of thermal expansion β are 
1/temperature, those of specific heat cp are length2/time2⋅temperature (Problem 7-14), 
and those of thermal conductivity k are mass⋅length/time3⋅temperature. Thus, 

Primary dimensions of Rayleigh number: { } { }

2 2
3

2 6 2

3

L 1 m LTL
Tt L t TRa

mL m
Ltt T

 
  = = 
 
  

1  (2) 

 We take the ratio of Ra and Gr: 

Ratio of Rayleigh number and Grashof number: 

3 2

3 2

2

Ra
Gr

p

p

g T L c
ck

kg T L

β ρ
µµ

β ρ
µ

∆

= =
∆

 (3) 

We recognize Eq. 3 as the Prandtl number, 

Prandtl number: RaPr
Gr

p pc c
k k
µ ρ µ ν

ρ α
= = = =  (4) 

 
Discussion Many of the established nondimensional parameters are formed by the 
ratio or product of two (or more) other established nondimensional parameters. 
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7-48 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5h f g R nω ρ= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ω ρ g R 

{ }1L  { }1t−  { }1 3m L−  { }1 2L t−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. We choose 

Repeating parameters: ω, ρ, and R  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b ch Rω ρΠ =  { } ( )( ) ( ) ( ){ }1 11 1 1 3 1
1 L t m L L

a b− −Π =
1c

 

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10t t a−=  10 a= −  1 0a =  

length: { } { }1 130 1L L L Lb c−=  1 10 1 3b c= − +  1 1c = −  

The dependent Π is thus 

Π1: 1
h
R

Π =   

 The second Pi (the only independent Π in this problem) is generated: 
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2 2 2
2

a b cg Rω ρΠ =  { } ( )( ) ( ) ( ){ }2 21 2 1 1 3 1
2 L t t m L L

a b− − −Π =
2c

 

 

mass: { } { }20m mb=  20 b=  2 0b =  

time: { } { }20 2t t t a−−=  20 2 a= − −  2 2a = −  

length: 
{ } { }2 230 1L L L Lb c−=  2 2

2

0 1 3
0 1

b c
c

= − +
= +

 2 1c = −  

which yields 

Π2: 2 2

g
Rω

Π =   

If we take Π2 to the power –1/2 and recognize that ωR is the speed of the rim, we 
see that Π2 can be modified into a Froude number, 

Modified Π2: 2 Fr R
gR
ω

Π = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Frh f
R
=  (2) 

 
Discussion In the generation of the first Π, h and R have the same dimensions. 
Thus, we could have immediately written down the result, Π1 = h/R. Notice that 
density ρ does not appear in the result. Thus, density is not a relevant parameter after 
all. 
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7-49 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7h f g R t nω ρ µ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ω ρ g R t µ 

{ }1L  { }1t−  { }1 3m L−  { }1 2L t−  { }1L  { }1t  { }1 1 1m L t− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  7 3 4k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. For convenience 
we choose the same repeating parameters that we used in Problem 7-48, 

Repeating parameters: ω, ρ, and R  

 
Step 5 The first two Πs are identical to those of Problem 7-48: 

Π1: 1
h
R

Π =   

and 

Π2: 2
R

gR
ω

Π =   

where Π2 is identified as a form of the Froude number. The third Π is formed 
with time t. Since repeating parameter ω has dimensions of 1/time, it is the only one 
that remains in the Π. Thus, without the formal algebra, 

Π3: 3 tωΠ =   

Finally, Π4 is generated with liquid viscosity, 

4 4 4
4

a b cRµω ρΠ =  { } ( )( ) ( ) ( ){ }4 41 1 1 1 1 3 1
4 m L t t m L L

a b− − − −Π =
4c
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mass: { } { }40 1m m mb=  40 1 b= +  4 1b = −  

time: { } { }40 1t t t a−−=  40 1 a= − −  4 1a = −  

length: 
{ } { }1 130 1L L L Lb c−−=  4 4

4 4

0 1 3
1 3

b c
c b
= − − +
= +

 4 2c = −  

The final Π is thus 

Π4: 4 2R
µ

ρ
Π =

Ω
 (2) 

If we invert Π4 and recognize that ωR is the speed of the rim, it becomes clear 
that Π4 of Eq. 2 can be modified into a Reynolds number, 

Modified Π4: 
2

4 ReRρω
µ

Π = =  (3) 

 
Step 6 We write the final functional relationship as 

Relationship between Πs: (Fr, , Reh f t
R

ω= )  (4) 

 
Discussion Notice that this time density ρ does appear in the result. There are 
other acceptable answers, but this one has the most established dimensionless groups. 
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7-50 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5kf f V D nρ µ= =  

 
Step 2 The primary dimensions of each parameter are listed, 
 

fk V ρ µ D 

{ }1t−  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. We choose 

Repeating parameters: V, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c
kf V DρΠ =  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130L L L La b c−=  1 10 3a b= − + 1c  1 1c =  

The dependent Π is thus 

Π1: 1 Stkf D
V

Π = =   

where we have identified this Pi as the Strouhal number. 
 The second Pi (the only independent Π in this problem) is generated: 
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2 2 2
2

a b cV Dµ ρΠ =  { } ( )( ) ( ) ( ){ }2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b− − − −Π =
2c

 

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2

2

0 1 3
0 1 1 3

a b c
c

2= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 VD
µ

ρ
Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVDρ
µ

Π = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )St Ref=   

 
Discussion We cannot tell from dimensional analysis the exact form of the 
functional relationship. However, experiments verify that the Strouhal number is 
indeed a function of Reynolds number. 
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7-51 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are six parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6kf f V D c nρ µ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

fk V ρ µ D c 

{ }1t−  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 1L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  6 3 3k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. We choose 

Repeating parameters: V, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c
kf V DρΠ =  { } ( )( ) ( ) ( ){ }1 11 1 1 1 3 1

1 t L t m L L
a b− − −Π =

1c  

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130L L L La b c−=  1 10 3a b= − + 1c  1 1c =  

The dependent Π is thus 

Π1: 1 Stkf D
V

Π = =   

where we have identified this Pi as the Strouhal number. 
 The second Pi (the first independent Π in this problem) is generated: 
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2 2 2
2

a b cV Dµ ρΠ =  { } ( )( ) ( ) ( ){ }2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b− − − −Π =
2c

 

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2

2

0 1 3
0 1 1 3

a b c
c

2= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 VD
µ

ρ
Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVDρ
µ

Π = = =   

 The third Pi (the second independent Π in this problem) is generated: 

3 3 3
3

a b ccV DρΠ =  { } ( )( ) ( ) ( ){ }3 31 1 1 1 1 3 1
3 L t L t m L L

a b− − −Π =
3c

 

 

mass: { } { }30m mb=  30 b=  3 0b =  

time: { } { }30 1t t t a−−=  30 1 a= − −  3 1a = −  

length: 
{ } { }3 3 330 1L L L L La b c−=  3 3

3

0 1 3
0 1 1

a b c
c

3= + − +

= − +
 3 0c =  

which yields 

Π3: 3
c
V

Π =   

We recognize this Π as the inverse of the Mach number. So, after inverting, 

Modified Π3: 3 Mach number MaV
c

Π = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )St Re, Maf=   

 
Discussion We have shown all the details. After you become comfortable with 
the method of repeating variables, you can do some of the algebra in your head. 
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7-52 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5W f D nω ρ µ= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

W  ω ρ µ D 

{ }1 2 3m L t−  { }1t−  { }1 3m L−  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. We choose 

Repeating parameters: ω, ρ, and D  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cW Dω ρΠ =  { } ( )( ) ( ) ( ){ }1 11 2 3 1 1 3 1
1 m L t t m L L

a b− − −Π = 1c  

 

mass: { } { }10 1m m mb=  10 1 b= +  1 1b = −  

time: { } { }10 3t t t a−−=  10 3 a= − −  1 3a = −  

length: { } { }1 130 2L L L Lb c−=  1 10 2 3b c= − +  1 5c = −  

The dependent Π is thus 

Π1: 1 5 3 P
W N
Dρ ω

Π = =   

where we have defined this Pi as the power number (Table 7-5). 
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 The second Pi (the only independent Π in this problem) is generated: 

2 2 2
2

a b cDµω ρΠ =  { } ( )( ) ( ) ( ){ }2 21 1 1 1 1 3 1
2 m L t t m L L

a b− − − −Π = 2c
 

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 230 1L L L Lb c−−=  2 2

2

0 1 3
0 1 3

b c
c

= − − +
= − + +

 2 2c = −  

which yields 

Π2: 2 2D
µ

ρ ω
Π =   

Since Dω is the speed of the tip of the rotating stirrer blade, we recognize this Π as 
the inverse of a Reynolds number. So, after inverting, 

Modified Π2: 
( )2

2 Reynolds number Re
D DD ρ ωρ ω

µ µ
Π = = = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )RePN f=  (2) 

 
Discussion After some practice you should be able to do some of the algebra with 
the exponents in your head. Also, we usually expect a type of Reynolds number when 
we combine viscosity with a density, a length, and some kind of speed, be it angular 
speed or linear speed. 

  
 
 

7-43 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 7 – Dimensional Analysis 

7-53 
Solution We are to determine the dimensionless relationship between the given 
parameters  
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The dimensional analysis is identical to the Problem 7-52 except that 
we add two additional independent parameters, both of which have dimensions of 
length. The two Πs of Problem 7-52 remain. We get two additional Πs since n is now 
equal to 7 instead of 5. There is no need to go through all the algebra for the two 
additional Πs – since their dimensions match those of one of the repeating variables 
(D), we know that all the exponents in the Π will be zero except the exponent for D, 
which will be –1. The two additional Πs are 

Π3 and Π4: tank surface
3 4        

D h
D D

Π = Π =   

The final functional relationship is 

Relationship between Πs: tank surfaceRe, ,P
D h

N f
D D

 =  
 

 (1) 

 
Discussion We could also manipulate our Πs so that we have other length ratios 
like hsurface/Dtank, etc. Any such combination is acceptable. 
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Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5f x V nδ ρ µ= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

δ x V ρ µ 

{ }1L  { }1L  { }1 1L t−  { }1 3m L−  { }1 1 1m L t− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  
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If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length 
scale x, density ρ, and freestream velocity V. 

Repeating parameters: , , and x Vρ   

 
Step 5 The Πs are generated. Note that for the first Π we can do the algebra in 
our heads since the relationship is very simple. Namely, the dimensions of δ are 
identical to those of one of the repeating variables (x). In such a case we know 
that all the exponents in the Π group are zero except the one for x, which is –1. 
The dependent Π is thus 

Π1: 1 x
δ

Π =   

The second Π is formed with viscosity, 

2
a b cx Vµ ρΠ =  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 1

2 m L t L m L L t
a b− − − −Π =

c
 

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1t t t c− −=  0 1 c= − −  1c = −  

length: { } { }0 1 3L L L L La b c− −=  
0 1 3
0 1 3 1

a b
a

c= − + − +
= − + + −

 
1a = −  

which yields 

Π2: 2 Vx
µ
ρ

Π =   

We recognize this Π as the inverse of the Reynolds number, 

Modified Π2 = Reynolds number based on x: 2 Rex
Vxρ
µ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Rexf
x
δ
=   

 
Discussion We cannot determine the form of the relationship by purely 
dimensional reasoning since there are two Πs. However, in Chap. 10 we shall see that 
for a laminar boundary layer, Π1 is proportional to the square root of Π2. 
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7-55 
Solution We are to create a scale for volume flow rate and then define an 
appropriate Richardson number.  
 
Analysis By “back of the envelope” reasoning (or by inspection), we define a 
volume flow rate scale as L2V. Then the Richardson number can be defined as 

Richardson number: 
( )

5 5

22 2
Ri L g L g Lg

VV L V
2

ρ ρ ρ
ρρ ρ

∆ ∆
= = =

∆  (1) 

 
Discussion It is perhaps more clear from the form of Eq. 1 that Richardson 
number is a ratio of buoyancy forces to inertial forces. 

  
 
 
7-56 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are six parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6u f V h y nµ ρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

u µ V h ρ y 

{ }1 1L t−  { }1 1 1m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  6 3 3k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. It is better to 
pick a fixed length (h) rather than a variable length (y); otherwise y would appear in 
each Pi, which would not be desirable. We choose 
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Repeating parameters: V, ρ, and h  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b cuV hρΠ =  { } ( )( ) ( ) ( ){ }1 11 1 1 1 1 3 1
1 L t L t m L L

a b− − −Π =
1c

 

 

mass: { } { }10m mb=  10 b=  1 0b =  

time: { } { }10 1t t t a−−=  10 1 a= − −  1 1a = −  

length: { } { }1 1 130 1L L L L La b c−=  1 10 1 3a b 1c= + − +  1 0c =  

The dependent Π is thus 

Π1: 1
u
V

Π =   

 The second Pi (the first independent Π in this problem) is generated: 

2 2 2
2

a b cV hµ ρΠ =  { } ( )( ) ( ) ( ){ }2 21 1 1 1 1 1 3 1
2 m L t L t m L L

a b− − − −Π =
2c

 

 

mass: { } { }20 1m m mb=  20 1 b= +  2 1b = −  

time: { } { }20 1t t t a−−=  20 1 a= − −  2 1a = −  

length: 
{ } { }2 2 230 1L L L L La b c−−=  2 2

2

0 1 3
0 1 1 3

a b
c

2c= − + − +
= − − + +

 2 1c = −  

which yields 

Π2: 2 Vh
µ
ρ

Π =   

We recognize this Π as the inverse of the Reynolds number. So, after inverting, 

Modified Π2: 2 Reynolds number ReVhρ
µ

Π = = =   

 The third Pi (the second independent Π in this problem) is generated: 

3 3
3

a b cyV hρΠ = 3  { } ( )( ) ( ) ( ){ }3 31 1 1 1 3 1
3 L L t m L L

a b− −Π =
3c

 

 

mass: { } { }30m mb=  30 b=  3 0b =  
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time: { } { }30t t a−=  30 a= −  3 0a =  

length: 
{ } { }3 3 330 1L L L L La b c−=  3 3

3

0 1 3
0 1

a b c
c

3= + − +

= +
 3 1c = −  

which yields 

Π3: 3
y
h

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: Re,u yf
V h

 =  
 

 (2) 

 
Discussion We notice in the first and third Πs that when the parameter on which 
we are working has the same dimensions as one of the repeating parameters, the Π is 
simply the ratio of those two parameters (here u/V and y/h). 

  
 
 
7-57 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7u f V h y t nµ ρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

u µ V h ρ y t 

{ }1 1L t−  { }1 1 1m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1L  { }1t  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  7 3 4k n j= − = − =  
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Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines outlined in this chapter, we elect not to pick the viscosity. It is better to 
pick a fixed length (h) rather than a variable length (y); otherwise y would appear in 
each Pi, which would not be desirable. It would also not be wise to have time appear 
in each parameter. We choose 

Repeating parameters: V, ρ, and h  

 
Step 5 The Πs are generated. The first three Πs are identical to those of 
Problem 7-56, so we do not include the details here. The fourth Π is formed by 
joining the new parameter t to the repeating variables, 

4 4 4
4

a b ctV hρΠ =  { } ( )( ) ( ) ( ){ }4 41 1 1 1 3 1
4 t L t m L L

a b− −Π =
4c

 

 

mass: { } { }40m mb=  40 b=  4 0b =  

time: { } { }40 1t t t a−=  40 1 a= −  4 1a =  

length: { } { }1 4 430L L L La b c−=  4 40 3a b 4c= − +  4 1c = −  

This Π is thus 

Π4: 4
tV
h

Π =   

 
Step 6 Combining this result with the first three Πs from Problem 7-56, 

Relationship between Πs: Re, ,u yf
V h

 = 
 

tV
h   (2) 

 
Discussion As t → ∞, Π4 becomes irrelevant and the result degenerates into that 
of Problem 7-56. 

  
 
 
7-58 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters:  ( )gas, ,           4c f k T R n= = (1) 
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Step 2 The primary dimensions of each parameter are listed; the ratio of specific 
heats k is dimensionless. 
 

c k T Rgas 

{ }1 1L t−  { }1  { }1T  { }2 2 1L t T− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (T, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

Thus we expect only one Π. 
 
Step 4 We need to choose three repeating parameters since j = 3. We only have one 
choice in this problem, since there are only three independent parameters on the right-
hand side of Eq. 1. However, one of these is already dimensionless, so it is a Π all by 
itself. In this situation we reduce j by one and continue, 

Reduction:  3 1 2j = − =  

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 2 2k n j= − = − =  

We now expect two Πs. We choose two repeating parameters since j = 2, 

Repeating parameters: T and Rgas  

 
Step 5 The dependent Π is generated:  

1 1
1 g

a bcT RΠ = as  { } ( )( ) ( ){ }1 11 1 1 2 2 1
1 L t T L t T

a b− −Π = −  

 

time: { } { }11 20t t b− −=  10 1 2b= − −  1 1/ 2b = −  

temperature: { } { }1 10T Ta b−=  1 1a b=  1 1/ 2a = −  

length: { } { }120 1L L L b=  10 1 2b= +  1 1/ 2b = −  

Fortunately the two results for exponent b1 agree. The dependent Π is thus 

Π1: 1
gas

c
R T

Π =   

The independent Π is already known, 
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Π2:  2 kΠ =  

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )
gas

c f k
R T

=  (2) 

 
Discussion We cannot tell from dimensional analysis the exact form of the 
functional relationship. However, in this case the result agrees with the known 
equation for speed of sound in an ideal gas, gasc kR= T . 

  
 
 
7-59 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5uc f k T R M n= = (1) 

 
Step 2 The primary dimensions of each parameter are listed; the ratio of specific 
heats k is dimensionless. 
 

c k T Ru M 

{ }1 1L t−  { }1  { }1T  { }1 2 2 1 1m L t T N− − −  { }1 1m N−  
 
Step 3 As a first guess, j is set equal to 5, the number of primary dimensions 
represented in the problem (m, T, L, N, and t). 

Reduction:  5j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 5 0k n j= − = − =  

Obviously we cannot have zero Πs. We check that we have not missed a relevant 
parameter. Convinced that we have included all the relevant parameters we reduce j 
by 1: 

Reduction:  5 1 4j = − =  

If this value of j is correct, the expected number of Πs is 
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Number of expected Πs:  5 4 1k n j= − = − =  

 
Step 4 We need to choose four repeating parameters since j = 4. We only have one 
choice in this problem, since there are only four independent parameters on the right-
hand side of Eq. 1. However, one of these is already dimensionless, so it is a Π all by 
itself. In this situation we reduce j by one (again) and continue, 

Reduction:  4 1 3j = − =  

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

We now expect two Πs. Since j = 3 we choose three repeating parameters, 

Repeating parameters: T, M, and Ru  

 
Step 5 The dependent Π is generated:  

1 1
1

a b c
ucT M RΠ = 1  { } ( )( ) ( ) ( ){ }1 11 1 1 1 1 1 2 2 1 1

1 L t T m n m L t T N
a b− − − −Π = 1c−  

 

time: { } { }120 1t t t c−−=  10 1 2c= − −  1 1/ 2c = −  

mass: { } { }1 10m m mb c=  1 1 10      b c b c1= + = −  1 1/ 2b =  

amount of 
matter: { } { }1 10N N Nb c− −=  1 1 10      b c b c1= − − = −  1 1/ 2b =  

temperature: { } { }1 10T T Ta c−=  1 1 10       a c a c1= − =  1 1/ 2a = −  

length: { } { }120 1L L L c=  10 1 2c= +  1 1/ 2c = −  

Fortunately the two results for exponent b1 agree, and the two results for exponent c1 
agree. (If they did not agree, we would search for algebra mistakes. Finding none we 
would suspect that j is not correct or that we are missing a relevant parameter in the 
problem.) The dependent Π is thus 

Π1: 1
u

c M
R T

Π =   

The independent Π is already known, 

Π2:  2 kΠ =  

 
Step 6 We write the final functional relationship as 
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Relationship between Πs: ( )1
u

c M f k
R T

Π = =  (2) 

 
Discussion Since we know that Rgas = Ru/M, we see that the result here is the same 
as that of Problem 7-58. 

  
 
 
7-60 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are three parameters in this problem; n = 3, 

List of relevant parameters:  ( )gas,           3c f T R n= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

c T Rgas 

{ }1 1L t−  { }1T  { }2 2 1L t T− −  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (T, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  3 3 0k n j= − = − =  

Obviously this is not correct, so we re-examine our initial assumptions. We can add 
another variable, k (the ratio of specific heats) to our List of relevant parameters. This 
problem would then be identical to Problem 7-58. Instead, for instructional purposes 
we reduce j by one and continue, 

Reduction:  3 1 2j = − =  

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs:  3 2 1k n j= − = − =  

We now expect only one Π. 
 
Step 4 We need to choose two repeating parameters since j = 2. We only have one 
choice in this problem, since there are only two independent parameters on the right-
hand side of Eq. 1,  
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Repeating parameters: T and Rgas  

 
Step 5 The dependent Π is generated:  

1 1
1 g

a bcT RΠ = as  { } ( )( ) ( ){ }1 11 1 1 2 2 1
1 L t T L t T

a b− −Π = −  

 

time: { } { }11 20t t b− −=  10 1 2b= − −  1 1/ 2b = −  

temperature: { } { }1 10T Ta b−=  1 1a b=  1 1/ 2a = −  

length: { } { }120 1L L L b=  10 1 2b= +  1 1/ 2b = −  

Fortunately the two results for exponent b1 agree. The dependent Π is thus 

Π1: 1
gas

c
R T

Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if 
we set the Π equal to a constant. We write the final functional relationship as 

Relationship between Πs: 1
gas

constantc
R T

Π = =  (2) 

 
Discussion Our result represents an interesting case of “luck”. Although we failed 
to include the ratio of specific heats k in our analysis, we nevertheless obtain the 
correct result. In fact, if we set the constant in Eq. 2 as the square root of k, our result 
agrees with the known equation for speed of sound in an ideal gas, gasR T=c k . 

  
 
 
7-61 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters, and compare to the known equation for an ideal gas. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are three parameters in this problem; n = 3, 

List of relevant parameters:  ( ),           3c f P nρ= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
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c P ρ 

{ }1 1L t−  { }1 1 2m L t− −  { }1 3m L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  3 3 0k n j= − = − =  

Obviously this is not correct, so we re-examine our initial assumptions. If we are 
convinced that c is a function of only P and ρ, we reduce j by one and continue, 

Reduction:  3 1 2j = − =  

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs:  3 2 1k n j= − = − =  

We now expect only one Π. 
 
Step 4 We need to choose two repeating parameters since j = 2. We only have one 
choice in this problem, since there are only two independent parameters on the right-
hand side of Eq. 1,  

Repeating parameters: P and ρ  

 
Step 5 The dependent Π is generated:  

1 1
1

a bcP ρΠ =  { } ( )( ) ( ){ }1 11 1 1 1 2 1 3
1 L t m L t m L

a b− − − −Π =  

 

time: { } { }120 1t t t a−−=  10 1 2a= − −  1 1/ 2a = −  

mass: { } { }1 10m m ma b=  1 10 a b= +  1 1/ 2b =  

length: 
{ } { }1 12 30 1L L L La b− −=  1 1

31
2 2

0 1 3
0 1

a b= − −

= + −
 

0 0=  

Fortunately the exponents for length agree with those of mass and time. The 
dependent Π is thus 

Π1: 1 c
P
ρ

Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if 
we set the Π equal to a constant. We write the final functional relationship as 
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Relationship between Πs: 1 constant, or constant Pc c
P
ρ

ρ
Π = = =  (2) 

The ideal gas equation is P = ρRgasT, or P/ρ = RgasT. Thus, Eq. 2 can be written as 

Alternative result using ideal gas law: gasconstantc = R T  (3) 

Equation 3 is indeed consistent with the equation gasR=c k . T
 
Discussion There is no way to obtain the value of the constant in Eq. 2 or 3 solely 
by dimensional analysis, but it turns out that the constant is the square root of k. 

  
 
 
7-62 
Solution We are to use dimensional analysis to find a functional relationship 
between FD and variables V, L, and µ. 
 
Assumptions 1 We assume Re << 1 so that the creeping flow approximation 
applies. 2 Gravitational effects are irrelevant. 3 No parameters other than those listed 
in the problem statement are relevant to the problem. 
 
Analysis We follow the step-by-step method of repeating variables.  
 
Step 1 There are four variables and constants in this problem; n = 4. They are listed 
in functional form, with the dependent variable listed as a function of the independent 
variables and constants: 

List of relevant parameters:  ( ), ,           4DF f V L nµ= =

 
Step 2 The primary dimensions of each parameter are listed. 
 

FD V L µ 

{ }1 1 2m L t−  { }1 1L t−  { }1L  { }1 1 1m L t− −  
 
Step 3 As a first guess, we set j equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction: 3j =  

If this value of j is correct, the number of Πs expected is 

Number of expected Πs:  4 3 1k n j= − = − =

 
Step 4 Now we need to choose three repeating parameters since j = 3. Since we 
cannot choose the dependent variable, our only choices are V, L, and µ. 
 
Step 5 Now we combine these repeating parameters into a product with the 
dependent variable FD to create the dependent Π,  
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Dependent Π: 1 1 1
1

a b c
DF V L µΠ =  (1) 

We apply the primary dimensions of Step 2 into Eq. 1 and force the Π to be 
dimensionless, 

Dimensions of Π1:

 { } { } { } ( )( ) ( ) ( ){ }1 1 1
1 1 10 0 0 1 1 2 1 1 1 1 1 1

1 m L t m L t L t L m L t
a b ca b c

DF V L µ − − − −Π = = =   

Now we equate the exponents of each primary dimension to solve for exponents a1 
through c1. 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

time: { } { }1 10 2t t t ta c− −−=  1 10 2 a c= − − −  1 1a = −  

length: { } { }1 1 10 1L L L L La b c−=  1 10 1 a b c1= + + −  1 1b = −  

Equation 1 thus becomes 

Π1: 1
DF

VLµ
Π =  (2) 

 
Step 6 We now write the functional relationship between the nondimensional 
parameters. In the case at hand, there is only one Π, which is a function of nothing. 
This is possible only if the Π is constant. Putting Eq. 2 into standard functional form, 

Relationship between Πs: ( )1 nothing constantDF
f

VLµ
Π = = =  (3) 

or 

Result of dimensional analysis: constantDF VLµ= ⋅  (4) 

Thus we have shown that for creeping flow around an object, the aerodynamic drag 
force is simply a constant multiplied by µVL, regardless of the shape of the object. 
 
Discussion This result is very significant because all that is left to do is find the 
constant, which will be a function of the shape of the object (and its orientation with 
respect to the flow). 

  
 
 
7-63 
Solution We are to find the functional relationship between the given 
parameters and name any established dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
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Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( )( ), , ,           5p pV f d g nρ ρ µ= − =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

V dp (ρp - ρ) µ g 

{ }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length 
scale dp, density difference (ρp - ρ), and gravitational constant g. 

Repeating parameters: , , and pd gρ   

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our 
heads since the relationship is very simple. The dependent Π is 

Π1 = a Froude number: 1
p

V
gd

Π =   

This Π is a type of Froude number. Similarly, the Π formed with viscosity is 
generated, 

( )2

ba c
p pd gµ ρ ρΠ = −  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 2

2 m L t L m L L t
a b− − − −Π =

c
 

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t c− −=  0 1 2c= − −  1
2

c = −  

length: 
{ } { }0 1 3L L L L La b c− −=  1

2

0 1 3
0 1 3

a b
a

c= − + − +

= − + + −
 

3
2

a = −  

which yields 
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Π2: 
( )

2 3
2

p pd g

µ

ρ ρ
Π =

−
  

We recognize this Π as the inverse of a kind of Reynolds number if we split the dp 
terms to separate them into a length scale and (when combined with g) a velocity 
scale. The final form is 

Modified Π2 = a Reynolds number: 
( )

2
p pd gdρ ρ

µ

−
Π =

p   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 
( )p p

p

d gdV f
gd

ρ ρ

µ

 −
 =
 
 

p  (2) 

 
Discussion We cannot determine the form of the relationship by purely 
dimensional reasoning since there are two Πs. However, in Chap. 10 we shall see that 
Π1 is a constant times Π2. 

  
 
 

7-64 
Solution We are to develop an equation for the settling speed of an aerosol 
particle falling in air under creeping flow conditions.  
 
Assumptions 1 The particle falls at steady speed V. 2 The Reynolds number is small 
enough that the creeping flow approximation is valid. 
 
Analysis We start by recognizing that as the particle falls at steady settling 
speed, its net weight W must equal the aerodynamic drag FD on the particle. We also 
know that W is proportional to (ρp - ρ)gdp

3. Thus, 

Equating forces: ( ) 3
1 2constant constantp p DW gd Fρ ρ µ= − = = pVd  (1) 

where we have converted the notation of Problem 7-62 to that of Problem 7-63, and 
we have defined two different constants. The two constants in Eq. 1 can be combined 
into one new constant for simplicity. Solving for V, 

Settling speed: 
( ) 2

constant p pgd
V

ρ ρ

µ

−
=  (2) 

If we divide both sides of Eq. 2 by pgd  we see that the functional relationship 
given by Eq. 2 of Problem 7-63 is consistent. 
 
Discussion This result is valid only if the Reynolds number is much smaller than 
one, as will be discussed in Chap. 10. If the particle is less dense than the fluid (e.g. 
bubbles rising in water), our result is still valid, but the particle rises instead of falls.  
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7-65 
Solution We are to determine how the settling speed of an aerosol particle 
falling in air under creeping flow conditions changes when certain parameters are 
doubled.  
 
Assumptions 1 The particle falls at steady speed V. 2 The Reynolds number is small 
enough that the creeping flow approximation is valid. 
 
Analysis From the results of Problem 7-64, we see that if particle size doubles, 
the settling speed will increase by a factor of 22 = 4. Similarly, if density 
difference doubles, the settling speed will increase by a factor of 21 = 2. 
 
Discussion This result is valid only if the Reynolds number remains much smaller 
than unity, as will be discussed in Chap. 10. As the particle’s settling speed increases 
by a factor of 2 or 4, the Reynolds number will also increase by that same factor. If 
the new Reynolds number is not small enough, the creeping flow approximation will 
be invalid and our results will not be correct, although the error will probably be 
small.  

  
 
 
7-66 
Solution We are to generate a nondimensional relationship between the given 
parameters. 
 
Assumptions 1 The flow is fully developed. 2 The fluid is incompressible. 3 No 
other parameters are significant in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters. 
 
Step 1 All the relevant parameters in the problem are listed in functional form: 

List of relevant parameters: ( ), , , , ,           7P f V D L nε ρ µ∆ = =   

 
Step 2 The primary dimensions of each parameter are listed: 
 

∆P V ε ρ µ D L 

{ }1 1 2m L t− −  { }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  7 3 4k n j= − = − =  
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Step 4 We need to choose three repeating parameters since j = 3. Following the 
guidelines listed in Table 7-3, we cannot pick the dependent variable, ∆P. We 
cannot choose any two of parameters ε, L, and D since their dimensions are identical. 
It is not desirable to have µ or ε appear in all the Πs. The best choice of repeating 
parameters is thus V, D, and ρ. 

Repeating parameters: V, D, and ρ  

 
Step 5 The dependent Π is generated:  

1 1
1

a b cPV D 1ρΠ = ∆  { } ( )( ) ( ) ( ){ }1 1 11 1 2 1 1 1 1 3
1 m L t L t L m L

a b c− − − −Π =  

 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

time: { } { }10 2t t t a−−=  10 2 a= − −  1 2a = −  

length: 
{ } { }1 1 130 1L L L L La b c−−=  1 1

1

0 1 3
0 1 2 3

a b c
b

= − + + −
= − − + +

1  1 0b =  

The dependent Π is thus 

Π1: 1 2

P
Vρ
∆

Π =   

From Table 7-5, the established nondimensional parameter most similar to our Π1 
is the Euler number Eu. No manipulation is required. 
 We form the second Π with µ. By now we know that we will generate a 
Reynolds number, 

2 2 2
2

a b cV DΠ = µ ρ  2 Reynolds number ReVD
Π = = =

ρ
µ

 

The final two Π groups are formed with ε and then with L. The algebra is trivial for 
these cases since their dimension (length) is identical to that of one of the repeating 
variables (D). The results are 

3 3 3
3

a b cV DΠ = ε ρ  3 Roughness ratio
D

Π = =
ε  

4 4 4
4

a b cLV D ρΠ =  4 Length-to-diameter ratio or aspect ratioL
D

Π = =  

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 2Eu Re, ,P Lf
D DV
ε

ρ
∆ = = 

 

  (1) 
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Discussion The result applies to both laminar and turbulent fully developed pipe 
flow; it turns out, however, that the second independent Π (roughness ratio) is not 
nearly as important in laminar pipe flow as in turbulent pipe flow. Since ∆P drops 
linearly with distance down the pipe, we know that ∆P is linearly proportional to L/D. 
It is not possible to determine the functional relationships between the other Πs by 
dimensional reasoning alone. 

  
 
 
7-67 
Solution We are to determine by what factor volume flow rate increases in the 
case of fully developed laminar pipe flow when pipe diameter is doubled.  
 
Assumptions 1 The flow is steady. 2 The flow is fully developed, meaning that 
dP/dx is constant and the velocity profile does not change downstream. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters. 
 
Step 1 All the relevant parameters in the problem are listed in functional form: 

List of relevant parameters: , ,           4dPV f D n
dx

µ = = 
 

  

 
Step 2 The primary dimensions of each parameter are listed: 
 

V  D µ dP/dx 

{ }3 1L t−  { }1L  { }1 1 1m L t− −  { }1 2 2m L t− −  
  
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. Here we must pick 
all three independent parameters, 

Repeating parameters: D, µ, and dP/dx  

 
Step 5 The Π is generated:  

( ) 1 1 1
1 / a b cV dP dx D µΠ =  { } ( )( ) ( ) ( ){ }1 13 1 1 2 2 1 1 1 1

1 L t m L t L m L t
a b c− − − − −Π =

1  
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mass: { } { }1 10m m ma c=  1 10 a c= +  1 1c a= −  

time: 
{ } { }1 120 1t t t ta c− −−=  1 1

1 1

0 1 2
0 1 2

a c
a a

= − − −
= − − +

 
1 1a = −  

1 1c =  

length: 
{ } { }1 1 120 3L L L L La b c− −=  1 1

1 1

0 3 2
3 2

a b c
b a

1

1c
= − + −
= − + +

 1 4b = −  

The dependent Π is thus 

Π1: 1
4

V
dPD
dx

µ
Π =   

 
Step 6 Since there is only one Π, we set it equal to a constant. We write the final 
functional relationship as 

Relationship between Πs: 
4

1 constant,        constant D dPV
dxµ

Π = =  (1) 

We see immediately that if the pipe diameter is doubled with all other parameters 
fixed, the volume flow rate will increase by a factor of 24 = 16. 
 
Discussion We will see in Chap. 9 that the constant is π/8. There is no way to 
obtain the value of the constant from dimensional analysis alone. 

  
 
 
7-68 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( )( )out in, ,           4pQ f m c T T n= − =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

Q  m  cp Tout- Tin 

{ }1 2 3m L t−  { }1 1m t−  { }2 2 1L t T− −  { }1T  
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Step 3 As a first guess, j is set equal to 4, the number of primary dimensions 
represented in the problem (m, T, L, and t). 

Reduction:  4j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 4 0k n j= − = − =  

Obviously this is not correct, so we re-examine our initial assumptions. We are 
convinced that our list of parameters is sufficient, so we reduce j by one and continue, 

Reduction:  4 1 3j = − =  

If this revised value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

We now expect only one Π. 
 
Step 4 We need to choose three repeating parameters since j = 3. We only have one 
choice in this problem, since there are only three independent parameters on the right-
hand side of Eq. 1, 

Repeating parameters: ( )out in, , and pm c T T−   

 
Step 5 The dependent Π is generated:  

( ) 11 1
1 out in

ca b
pQm c T TΠ = −  { } ( )( ) ( ) ( ){ }1 11 2 3 1 1 2 2 1 1

1 m L t m t L t T T
a b− − − −Π = 1c

 

 

mass: { } { }110m m a+=  10 1 a= +  1 1a = −  

length: { } { }120 2L L L b=  10 2 2b= +  1 1b = −  

temperature: { } { }1 10T T b c− +=  1 1c b=  1 1c = −  

time: { } { }1 13 20t t a b− − −=  1 10 3 2a b= − − −  3 1 2= +  

Fortunately the result for the time exponents is consistent with that of the other 
dimensions. The dependent Π is thus 

Π1: ( )1
out inp

Q
mc T T

Π =
−

  

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if 
we set the Π equal to a constant. We write the final functional relationship as 

Relationship between Πs: 
( )1

out in

constant
p

Q
mc T T

Π = =
−

 (2) 
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Discussion When there is only one Π, we know the functional relationship to 
within some (unknown) constant. In this particular case, comparing to Eq. 1 of 
Problem 7-24, we see that the constant is unity, Q m . There is no way 
to obtain the constant in Eq. 2 from dimensional analysis; however, one experiment 
would be sufficient to determine the constant. 

( out inpc T T= − )

  
 
 
Experimental Testing and Incomplete Similarity 
 
7-69C 
Solution We are to define wind tunnel blockage and discuss its acceptable 
limit. We are also to discuss the source of measurement errors at high values of 
blockage. 
 
Analysis Wind tunnel blockage is defined as the ratio of model frontal area to 
cross-sectional area of the test-section. The rule of thumb is that the blockage 
should be no more than 7.5%. If the blockage were significantly higher than this 
value, the flow would have to accelerate around the model much more than if the 
model were in an unbounded situation. Hence, similarity would not be achieved. We 
might expect the aerodynamic drag on the model to be too high since the effective 
freestream speed is too large due to the blockage. 
 
Discussion There are formulas to correct for wind tunnel blockage, but they 
become less and less reliable as blockage increases. 

  
 
 
7-70C 
Solution We are to discuss the rule of thumb concerning Mach number and 
incompressibility. 
 
Analysis The rule of thumb is that the Mach number must stay below 
about 0.3 in order for the flow field to be considered “incompressible”. What this 
really means is that compressibility effects, although present at all Mach numbers, are 
negligibly small compared to other effects driving the flow. If Ma is larger than about 
0.3 in a wind tunnel test, the model flow field loses both kinematic and dynamic 
similarity, and the measured results are questionable. Of course, the error increases as 
Ma increases. 
 
Discussion Compressible flow is discussed in detail in Chap. 12. There you will 
see where the value 0.3 comes from. 
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7-71C 
Solution We are to discuss some situations in which a model should be larger 
than its prototype. 
 
Analysis There are many possible situations, and students’ examples should 
vary. Generally, any flow field that is very small and/or very fast benefits from 
simulation with a larger model. In most cases these are situations in which we want 
the model to be larger and slower so that experimental measurements and flow 
visualization are easier. Here are a few examples: 
 

− Modeling a hard disk drive. 
− Modeling insect flight. 
− Modeling the settling of very small particles in air or water. 
− Modeling the motion of water droplets in clouds. 
− Modeling flow through very fine tubing. 
− Modeling biological systems like blood flow through capillaries, flow in 

the bronchi of lungs, etc. 
 
Discussion You can think of several more examples. 

  
 
 
7-72C 
Solution We are to discuss the purpose of a moving ground belt and suggest an 
alternative. 
 

 

Wind tunnel 
test section V 

False wall 

 
 

FIGURE 1 
A false wall along the floor of a wind tunnel 
to reduce the size of the ground boundary 
layer. 

Analysis From the frame of reference of a moving car, both the air and the 
ground approach the car at freestream speed. When we test a model car in a wind 
tunnel, the air approaches at freestream speed, but the ground (floor of the wind 
tunnel) is stationary. Therefore we are not modeling the same flow. A boundary layer 
builds up on the wind tunnel floor, and the flow under the car cannot be expected to 
be the same as that under a real car. A moving ground belt solves this problem. 
Another way to say the same thing is to say that without the moving ground belt, 
there would not be kinematic similarity between the underside of the model and the 
underside of the prototype. 
 If a moving ground belt is unavailable, we could instead install a false wall 
– i.e., a thin flat plate just above the boundary layer on the floor of the wind 
tunnel. A sketch is shown in Fig. 1. At least then the boundary layer will be very thin 
and will not have as much influence on the flow under the model. 
 
Discussion We discuss boundary layer growth in Chap. 10. 

  
 
 
7-73 
Solution We are to show that Froude number and Reynolds number are the 
dimensionless parameters that appear in a problem involving shallow water waves.  
 
Assumptions 1 Wave speed c is a function only of depth h, gravitational 
acceleration g, fluid density ρ, and fluid viscosity µ. 
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Analysis We perform a dimensional analysis using the method of repeating 
variables. 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5c f h g nρ µ= =  

 
Step 2 The primary dimensions of each parameter are listed, 
 

c h ρ µ g 

{ }1 1L t−  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length 
scale h, density difference ρ, and gravitational constant g. 

Repeating parameters: , , and h gρ   

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our 
heads since the relationship is very simple. The dependent Π is 

Π1 = Froude number: 1 Fr c
gh

Π = =  (1) 

This Π is the Froude number. Similarly, the Π formed with viscosity is generated, 

2
a b ch gµ ρΠ =  { } ( )( ) ( ) ( ){ }1 1 1 1 1 3 1 2

2 m L t L m L L t
a b− − − −Π =

c
 

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t c− −=  0 1 2c= − −  1
2

c = −  

length: 
{ } { }0 1 3L L L L La b c− −=  1

2

0 1 3
0 1 3

a b
a

c= − + − +

= − + + −
 

3
2

a = −  

which yields 
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Π2: 2 3
2h g

µ

ρ
Π =   

We can manipulate this Π into the Reynolds number if we invert it and then multiply 
by Fr (Eq. 1) The final form is 

Modified Π2 = Reynolds number: 2 Re chρ
µ

Π = =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: ( )Fr Re   where  Rec cf
gh

hρ
µ

= = =   

 
Discussion As discussed in this chapter, it is often difficult to match both Fr and 
Re between a model and a prototype. 
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7-74 
Solution We are to nondimensionalize experimental pipe data, plot the data, 
and determine if Reynolds number independence has been achieved. We are then to 
extrapolate to a higher speed. 
 
Assumptions 1 The flow is fully developed. 2 The flow is steady and 
incompressible. 
 
Properties For water at T = 20oC and atmospheric pressure, ρ = 998.0 kg/m3 and 
µ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis (a) We convert each data point in Table P7-74 from V and ∆P to 
Reynolds number and Euler number. The calculations at the last (highest speed) data 
point are shown here: 

Reynolds number:

 
( )( )( )3

6
3

998.0 kg/m 50 m/s 0.104 m
Re 5.18 10

1.002 10  kg/m s
VDρ
µ −= = = ×

× ⋅
 

(1) 

and 

0.303

0.304

0.305

0.306

0.307

0.308

0.309

0 2 4

 

Re × 10-6 

Eu 

6

Reynolds number 
independence 

 
 

FIGURE 1 
Nondimensionalized experimental data from 
a section of pipe. 

Euler number: 
( )( )

2

2 2 23

758,700 N/m kg mEu 0.304
s N998.0 kg/m 50 m/s

P
Vρ
∆  = = = 

 
 (2) 

We plot Eu versus Re in Fig. 1. Although there is experimental scatter in the data, it 
appears that Reynolds number independence has been achieved beyond a Reynolds 
number of about 2 × 106. The average value of Eu based on the last 6 data points is 
0.3042. 
 

(b) We extrapolate to higher speeds. At V = 80 m/s, we calculate ∆P, assuming that 
Eu remains constant to higher values of Re, 

Extrapolated value:

 ( )( )
2

22 3 s NEu 0.3042 998.0 kg/m 80 m/s
kg m

P Vρ
 

∆ = × = = 
 

21,940,000 N/m  (3) 

 
Discussion It is shown in Chap. 8 that Reynolds number independence is indeed 
achieved at high-enough values of Re. The threshold value above which Re 
independence is achieved is a function of relative roughness height, ε/D. 
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7-75 
Solution We are to calculate the wind tunnel blockage of a model truck in a 
wind tunnel and determine if it is within acceptable limits. 
 
Assumptions 1 The frontal area is equal to truck width times height. (Note that the 
actual area of the truck may be somewhat smaller than this due to rounded corners 
and the air gap under the truck, but a truck looks nearly like a rectangle from the 
front, so this is not a bad approximation.) 
 
Analysis Wind tunnel blockage is defined as the ratio of model frontal area to 
cross-sectional area of the test-section, 

Blockage: 
( )( )

( )( )
model

wind tunnel

0.159 m 0.257 m
0.034

1.2 m 1.0 m
A

Blockage
A

= = = = 3.4%  (1) 

The rule of thumb is that the blockage should be no more than 7.5%. Since we are 
well below this value, we need not worry about blockage effects. 
 
Discussion The length of the model does not enter our analysis since we are only 
concerned with the frontal area of the model. 

  
 
 
7-76C 
Solution We are to discuss whether Reynolds number independence has been 
achieved, and whether the researchers can be confident about it. 
 
Analysis We remove the last four data points from Table 7-7 and from Fig. 7-
42. From the remaining data it appears that the drag coefficient is beginning to level 
off, but is still decreasing with Re. Thus, the researchers do not know if they have 
achieved Reynolds number independence or not. 
 
Discussion The wind tunnel speed is too low to achieve Reynolds number 
independence. 
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7-77E 
Solution We are to calculate the size and scale of the model truck to be 
constructed, and calculate its maximum Reynolds number. Then we are to determine 
whether this model in this wind tunnel will achieve Reynolds number independence.  
 
Assumptions 1 The model will be constructed carefully so as to achieve 
approximate geometric similarity. 2 The wind tunnel air is at the same temperature 
and pressure as that flowing over the prototype truck. 
 
Properties For air at T = 80oF and atmospheric pressure, ρ = 0.07350 lbm/ft3 and 
µ = 1.248 × 10-5 lbm/ft⋅s. 
 
Analysis  (a) The rule of thumb about blockage is that we should keep the 
blockage below 7.5%. Thus, the frontal area of the model truck must be no more than 
0.075 × Awind tunnel. The ratio of height to width of the full-scale truck is Hp/Wp = 
12/8.33 = 1.44. Thus, for the geometrically similar model truck, 

Equation for model truck width: wind tunnelm
m

m m

7.5%
1.44

AAW
H W

= =  (1) 

We solve Eq. 1 for Wm, 

Model truck width: 
( )2

wind tunnel
m

0.075 400 in7.5% 4.56 in
1.44 1.44
AW = = =  (2) 

Scaling the height and length geometrically, 

Model truck dimensions: m m m,  ,  W H L= = =4.56 in 6.57 in 28.5 in  (3) 

These dimensions represent a model that is scaled at approximately 1:22. 
 

(b) At the maximum speed, with Re based on truck width, 

Maximum Re:

 
( )( )( )3

m max
5

0.07350 lbm/ft 4.56 in 160 ft/s 1 ftRe
12 in1.248 10  lbm/ft s

W Vρ
µ −

 = = = × ⋅  
53.58×10  

(4) 

 

(c) Based on the data of Fig. 7-42, this Reynolds number is shy of the value needed 
to achieve Reynolds number independence. 
 
Discussion The students should run at the highest wind tunnel speed. Their 
measured values of CD will probably be higher than those of the prototype, but the 
relative difference in CD due to their modifications should still be valid. 
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7-78 
Solution We are to calculate and plot CD as a function of Re for a given set of 
wind tunnel measurements, and determine if dynamic similarity and/or Reynolds 
number independence have been achieved. Finally, we are to estimate the 
aerodynamic drag force acting on the prototype car.  
 
Assumptions 1 The model car is geometrically similar to the prototype car. 2 The 
aerodynamic drag on the strut holding the model car is negligible. 
 
Properties For air at atmospheric pressure and at T = 25oC, ρ = 1.184 kg/m3 and 
µ = 1.849 × 10-5 kg/(m s). 
 
Analysis We calculate CD and Re for the last data point listed in Table P7-78 
(at the fastest wind tunnel speed), 

Model drag coefficient at last data point:

 

( )( ) ( )( )
,m

,m 2 21
2m m m 32 1

2 2

4.91 N kg m 0.319
1.69 m 1.30 m s N

1.184 kg/m 55 m/s
16

D
D

F
V Aρ

 = = = 
 

C  

and 

Model Reynolds number at last data point:

 
( )( )3

5m m m
m 5

m

1.691.184 kg/m 55 m/s  m
16Re 3.72 10

1.849 10  kg/m s
V Wρ
µ −

 
 
 = = =

× ⋅
×  

(1) 

We repeat the above calculations for all the data points in Table P7-78, and we plot 
CD verses Re in Fig. 1. 
 Have we achieved dynamic similarity? Well, we have geometric similarity 
between model and prototype, but the Reynolds number of the prototype car is 

Reynolds number of prototype car:

 
( )( )( )3

p p p 6
p 5

p

1.184 kg/m 29 m/s 1.69 m
Re 3.14 10

1.849 10  kg/m s
V Wρ
µ −= = = ×

× ⋅
 (2) 

where the width and speed of the prototype are used in the calculation of Rep. 
Comparison of Eqs. 1 and 2 reveals that the prototype Reynolds number is more than 
eight times larger than that of the model. Since we cannot match the independent Πs 
in the problem, dynamic similarity has not been achieved. 
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 Have we achieved Reynolds number independence? From Fig. 1 we see that 
Reynolds number independence has indeed been achieved – at Re greater than 
about 3 × 105, CD has leveled off to a value of about 0.32 (to two significant digits). 
 Since we have achieved Reynolds number independence, we can extrapolate 
to the full scale prototype, assuming that CD remains constant as Re is increased to 
that of the full scale prototype. 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 1 2 3 4
Re × 10-5 

CD 

 
 

FIGURE 1 
Aerodynamic drag coefficient as a function 
of Reynolds number – results 
nondimensionalized from wind tunnel test 
data on a model car. 

Aerodynamic drag on the prototype:

 
( )( ) ( )( )

2
,p p p p ,p

2
23

1
2
1 s      1.184 kg/m 29 m/s 1.69 m 1.30 m 0.32
2 kg m

D DF V A Cρ=

 
= = 

 
350 NN

 

 
Discussion We give our final result to two significant digits. 

  
 

 
Review Problems 
 

7-79C 
Solution   
(a) False: Kinematic similarity is a necessary but not sufficient condition for 

dynamic similarity. 
(b) True: You cannot have dynamic similarity if the model and prototype are not 

geometrically similar. 
(c) True: You cannot have kinematic similarity if the model and prototype are not 

geometrically similar. 
(d) False: It is possible to have kinematic similarity (scaled velocities at 

corresponding points), yet not have dynamic similarity (forces do not scale at 
corresponding points). 

  
 

 
7-80C 
Solution We are to think of and describe a prototype and model flow in which 
there is geometric but not kinematic similarity even though Rem = Rep.  
 

Analysis Students’ responses will vary. Here are some examples: 
 

− A model car is being tested in a wind tunnel such that there is geometric 
similarity and the wind tunnel speed is adjusted so that Rem = Rep. However, 
there is not a moving ground belt, so there is not kinematic similarity 
between the model and prototype. 

− A model airplane is being tested in a wind tunnel such that there is geometric 
similarity and the wind tunnel speed is adjusted so that Rem = Rep. However, 
the Mach numbers are quite different, and therefore kinematic similarity is 
not achieved. 

− A model of a river or waterfall or other open surface flow problem in which 
there is geometric similarity and the speed is adjusted so that Rem = Rep. 
However, the Froude numbers do not match and therefore the velocity fields 
are not similar and kinematic similarity is not achieved. 

 

Discussion There are many more acceptable cases that students may imagine. 
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7-81C 
Solution We are to find at least three established nondimensional parameters 
not listed in Table 7-5, and list these following the format of that table.  
 
Analysis Students’ responses will vary. Here are some examples: 
 

Name Definition Ratio of significance 

Bingham 
number 

Bm L
V

τ
µ

=  yield stress
viscous stress

 

Elasticity 
number 2El ct

L
µ

ρ
=  elastic force

inertial force
 

Galileo number 
3 2

2Ga gD ρ
µ

=  gravitational force
viscous force

 

 
In the above, tc is a characteristic time. 
 
Discussion There are many more established dimensionless parameters in the 
literature. Some sneaky students may make up their own! 
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-82 
Solution We are to determine the primary dimensions of each variable, and 
then show that Hooke’s law is dimensionally homogeneous.  
 
Analysis  
(a) Moment of inertia has dimensions of length4, 

Primary dimensions of moment of inertia: { } { } { }4lengthI = = 4L  (1) 

 

(b) Modulus of elasticity has the same dimensions as pressure, 

Primary dimensions of modulus of elasticity:

 { } 2 2

force mass length 1
area time length

E
 ×  = = × = 

     
   

2

m
Lt 

 (2) 

Or, in exponent form, {E} = {m1 L-1 t-2}. 
 

(c) Strain is defined as change in length per unit length, so it is dimensionless. 

Primary dimensions of strain: { } { }length
length

ε
 

=  
 

1=  (3) 

 

(d) Stress is force per unit area, again just like pressure. 

Primary dimensions of stress: { } 2 2

force mass length
area time length

σ
 ×  = = = 

     
×   

2

m
Lt 

 (4) 

Or, in exponent form, {σ} = {m1 L-1 t-2}. 
 

(e) Hooke’s law is σ = Eε. We write the primary dimensions of both sides: 

Primary dimensions of Hooke’s law: { } { } 2

m 1
Lt

Eσ ε    = = = × = 
    
     2 2

m m
Lt Lt   (5) 

Or, in exponent form, the dimensions of both sides of the equation are {m1 L-1 t-2}. 
Thus we see that Hooke’s law is indeed dimensionally homogeneous. 
 
Discussion If the dimensions of Eq. 5 were not homogeneous, we would surely 
expect that we made an error somewhere. 

  
 
 
7-83 
Solution We are to find the functional relationship between the given 
parameters and name any established dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 
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List of relevant parameters:  ( ), , ,           5dz f F L E I n= = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

zd F L E I 

{ }1L  { }1 1 2m L t−  { }1L  { }1 1 2m L t− −  { }4L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot pick 
both length L and moment of inertia I since their dimensions differ only by a power. 
We also notice that we cannot choose F, L, and E since these three parameters can 
form a Π all by themselves. So, we set j = 3 – 1 = 2, and we choose two repeating 
parameters, expecting 5 – 2 = 3 Πs, 

Repeating parameters:   and L E  

 
Step 5 The Πs are generated. Note that for the first Π we do the algebra in our 
heads since zd has the same dimensions as L. The dependent Π is 

Π1: 1
dz

L
Π =   

This Π is not an established dimensionless group, although it is a ratio of two 
lengths, similar to an aspect ratio. 
 We form the second Π with force F: 

2
a bFL EΠ =  { } ( )( ) ( ){ }1 1 2 1 1 1 2

2 m L t L m L t
a b− −Π = −  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 2 2t t t b− −=  0 2 2b= − −  1b = −  

length: { } { }0 1L L L La b−=  
0 1

1
a b

a b
= + −
= − +

 
2a = −  

which yields 

Π2: 2 2

F
L E

Π =   
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We do not recognize Π2 as a named dimensionless parameter. 
 The final Π is formed with moment of inertia. Since {I} = {L4}, there is no 
need to go through the algebra – we write 

Π3: 3 4

I
L

Π =   

Again, we do not recognize Π2 as a named dimensionless parameter. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: 2 4,dz F If
L L E L

 = 
 

  (2) 

 
Discussion We cannot determine the form of the relationship by purely 
dimensional reasoning since there are three Πs. 

  
 
 
7-84 
Solution We are to generate dimensionless relationships among given 
parameters, and then we are to discuss how ∆P decreases if the time is doubled. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis  (a) We perform dimensional analyses using the method of repeating 
variables. First we analyze ∆P: 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters:  ( ), ,           4P f t c E n∆ = = (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

∆P t c E 

{ }1 1 2m L t− −  { }1t  { }1 1L t−  { }1 2 2m L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick all the 
independent parameters – time t, speed of sound c, and energy E, 

Repeating parameters:  , , and t c E  
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Step 5 The dependent Π is generated:  

1 1 1
1

a b cP t c EΠ = ∆ ×  { } ( )( ) ( ) ( ){ }1 11 1 2 1 1 1 1 2 2
1 m L t t L t m L t

a b− − − −Π =
1c

 

 

mass: { } { }10 1m m mc=  10 1 c= +  1 1c = −  

length: 
{ } { }1 120 1L L L Lb c−=  1 1

1 1

0 1 2
1 2

b c
b c
= − + +
= −

 1 3b =  

time: 
{ } { }1 1 120 2t t t t ta b c− −−=  1 1

1 1 1

0 2 2
2 2

a b c
a b c
= − + − −
= + +

1  1 3a =  

The dependent Π is thus 

Π1 for ∆P: 
3 3

1
t c P

E
∆

Π =   

This Π is not an established one, so we leave it as is. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 3constant EP
t c

∆ =  (2) 

 
 We perform a similar dimensional analysis using the same repeating 
variables, but this time for radius r. We do not show the algebra since the Π can be 
found by inspection. We get 

Π1 for r: 1
r
ct

Π =   

Since this is the only Π, it must be equal to a constant, 

Relationship between Πs: constantr = ⋅ct  (3) 
 

(b) From Eq. 2 we see that if t is doubled, ∆P decreases by a factor of 23 = 8. 
 
Discussion The pressure rise across the blast wave decays rapidly with time (and 
with distance from the explosion). The speed of sound depends on temperature. If the 
explosion is of sufficient strength, T will increase significantly and c will not remain 
constant. 
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7-85 
Solution We are to find an alternate definition of Archimedes number, and list 
it following the format of Table 7-5. Then we are to find an established Π group that 
is similar. 
 
Analysis Students’ responses will vary. There seems to be a plethora of 
definitions of Archimedes number. Here is the one most appropriate for buoyant 
fluids: 
 

Name Definition Ratio of significance 

Archimedes 
number 2Ar gL

V
ρ

ρ
∆

=  buoyant force
inertial force

 

 
In the above, ∆ρ is a characteristic density difference in the fluid (due to buoyancy) 
and ρ is a characteristic or average density of the fluid. A glance through Table 7-5 
shows that the Richardson number is very similar to this alternative definition of Ar. 
In fact, the alternate form of Ri (Problem 7-55) is identical to our new Ar. 
 
Discussion Some students may find other definitions that are also valid. For 
example, ∆ρ/ρ may be replaced by ∆T/T. 

  
 
 
7-86 
Solution We are to generate a dimensionless relationship between the given 
parameters.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
3 The flow is fully developed. 
 
Analysis  The step-by-step method of repeating variables is employed to 
obtain the nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: , , ,           5dPu f h y n
dx

µ = = 
 

 (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

u h dP/dx µ y 

{ }1 1L t−  { }1L  { }1 2 2m L t− −  { }1 1 1m L t− −  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 
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Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot pick 
both h and y since they have the same dimensions. We choose 

Repeating parameters: h, dP/dx, and µ  

 
Step 5 The dependent Π is generated:  

1

1 1
1

b
a cdPuh

dx
µ Π =  

 
 { } ( )( ) ( ) ( ){ }1 11 1 1 1 2 2 1 1 1

1 L t L m L t m L t
a b− − − −Π =

1c−  

 

mass: { } { }1 10m m mb c=  1 10 b c= +  1 1c b= −  

time: 
{ } { }1 120 1t t t tb c− −−=  1 1

1

0 1 2
0 1

b c
b

= − − −
= − −

 1

1

1
1

b
c
= −
=

 

length: { } { }1 1 120 1L L L L La b c− −=  1 1

1

0 1 2
0 1 1

a b
a

1c= + − −
= + +

 1 2a = −  

The dependent Π is thus 

Π1: 1
2

u
dPh
dx

µ
Π =   

The independent Π is generated with variable y. Since {y} = {L}, and this is the same 
as one of the repeating variables (h), Π2 is simply y/h,  

Π2: 2
y
h

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 1
2

u yf
dP hh
dx

µ  Π = =  
 

 (2) 

 
Discussion We solve this problem exactly in Chap. 9 where we see that the 
functional relationship of Eq. 2 is correct. 
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7-87 
Solution We are to generate a dimensionless relationship between the given 
parameters and then analyze the behavior of umax when an independent variable is 
doubled.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
3 The flow is fully developed. 
 
Analysis  (a) A step-by-step dimensional analysis procedure could be 
performed. However, we notice that umax has the same dimensions as u. Therefore the 
algebra would be identical to that of Problem 7-86 except that there is only one Π 
instead of two since y is no longer a parameter. The result is 

Relationship between Πs: max
1

2
constant

u
C

dPh
dx

µ
Π = = =  (1) 

or 

Final relationship for umax: 
2

max
h dPu C

dxµ
=  (2) 

Alternatively, we can use the results of Problem 7-86 directly. Namely, since we 
know that the maximum velocity occurs at the centerline, y/h = 1/2 there, and is a 
constant. Hence, Eq. 2 of Problem 7-86 reduces to Eq. 1 of the present problem. 
 

(b) If h doubles, we see from Eq. 2 that umax will increase by a factor of 22 = 4. 
 

(c) If dP/dx doubles, we see from Eq. 2 that umax will increase by a factor of 21 = 2. 
 

(d) Since there is only one Π in this problem, we would need to conduct only one 
experiment to determine the constant C in Eq. 2. 
 
Discussion The constant turns out to be -1/8, but there is no way to determine this 
from dimensional analysis alone (See Chap. 9 for an exact solution). 
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CD-EES 7-88 
Solution We are to generate a relationship for Darcy friction factor f in terms of 
Euler number Eu. We are then to plot f as a function of Re and discuss whether 
Reynolds number independence has been achieved. 
 
Assumptions 1 The flow is fully developed. 2 The flow is steady and 
incompressible. 
 
Properties For water at T = 20oC and atmospheric pressure, ρ = 998.0 kg/m3 and 
µ = 1.002 × 10-3 kg/m⋅s. 
 
Analysis (a) Since the flow is fully developed, the control volume cuts through 
two cross sections in which the velocity profiles are identical. The flow is also steady, 
so the control volume momentum equation in the horizontal (x) direction reduces to 

Conservation of momentum: ,  pressure , shear stress 0x x xF F F= + =∑ ∑ ∑  (1) 

We multiply pressure by cross-sectional area to obtain the pressure force, and wall 
shear stress times inner pipe wall surface area to obtain the shear stress force, 

 
2

, pressure , shear stress        
4x x
D

wF P Fπ τ π= ∆ = −∑ ∑ DL  (2) 

Note the negative sign in the shear stress term since τw points to the left. We substitute 
Eq. 2 into Eq. 1. After some algebra, 

Result: 
4 wL

P
D
τ

∆ =  (3) 

Finally, we divide both sides of Eq. 3 by ρV2 to convert ∆P into an Euler number, 

0.0485
0.0486
0.0487
0.0488
0.0489
0.049

0.0491
0.0492
0.0493
0.0494
0.0495

0 2 4 6

 

Re × 10-6 

f Reynolds number 
independence 

 
 

FIGURE 1 
Nondimensionalized experimental data from 
a section of pipe. 

Nondimensional relationship: 2 2

4 81Eu
2

w wLP L
DV V D V

τ τ
ρ ρ ρ

 ∆
= = = 

 
2   (4) 

We recognize the term in parentheses on the right as the Darcy friction factor. Thus, 

Final nondimensional relationship: 1Eu
2

L f
D

=      or     2 EuDf
L

=  (5) 

 

(b) We use Eq. 5 to calculate f at each data point of Table P7-74. We plot f as a 
function of Re in Fig. 1. We see that the behavior of f mimics that of Eu (as it 
must because of Eq. 5 where we see that f is just a constant times Eu). Since Eu 
shows Reynolds number independence for Re greater than about 2 × 106, so does 
f. We see Reynolds number independence for Re greater than about 2 × 106. 
From the plot, the extrapolated value of f at large Re is about 0.04867, which 
agrees with Eq. 5 when we plug in the Re-independent value of Eu, 

Extrapolated value of f: ( )0.104 m2 Eu 2 0.3042
1.3 m

Df
L

= = = 0.0487  (6) 

 
Discussion We show in Chap. 9 (the Moody chart) that f does indeed flatten out at 
high enough values of Re, depending on the relative roughness height, ε/D. 
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7-89 
Solution We are to create characteristic scales so that we can define a desired 
established dimensionless parameter.  
 
Analysis  (a) For Froude number we need a velocity scale, a length scale, and 
gravity. We already have a length scale and gravity. We create a velocity scale as 
V / L′ . We then define a Froude number as 

Froude number: 
3

Fr V V V
gL L gL gL

′ ′
= = =   

 

(b) For Reynolds number we need a velocity scale, a length scale, and kinematic 
viscosity. Of these we only have the kinematic viscosity, so we need to create a 
velocity scale and a length scale. After a “back of the envelope” analysis, we create a 
velocity scale as V / L′  where L is some undefined characteristic length scale. Thus, 

Reynolds number: Re LV LV V
Lν ν ν

′ ′
= = =   

Note that in this case, the length scales drop out, so it doesn’t matter that we could not 
define a length scale from the given parameters. 
 

(c) For Richardson number we need a length scale, the gravitational constant, a 
volume flow rate, a density, and a density difference. Of these we have all but the 
volume flow rate, so we create a volume flow rate scale as  V L′ . Thus, 

Richardson number: 
( ) ( )

5 5 3

2 22Ri L g L g L g
V V L V

ρ ρ ρ
ρ ρ ρ

∆ ∆
= = =

′ ′

∆   

 
Discussion You can verify that each of the parameters above is dimensionless. 

  
 
 
7-90 
Solution We are to find the functional relationship between the given 
parameters and name any established dimensionless parameters. 
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( ), , , , ,           7V f d D h g nρ µ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

V d D ρ µ h g 
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{ }1 1L t−  { }1L  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  7 3 4k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length 
scale h, fluid density ρ, and gravitational constant g. 

Repeating parameters: , , and h gρ   

 
Step 5 The Πs are generated. Note that in this case we do the algebra in our 
heads since these relationships are very simple. The dependent Π is 

Π1 = a Froude number: 1
V
gh

Π =   

This Π is a type of Froude number. Similarly, the two length-scale Πs are 
obtained easily, 

Π2: 2
d
h

Π =   

and 

Π3: 3
D
h

Π =   

Finally, the Π formed with viscosity is generated, 

4 4
4

a b ch gµ ρΠ = 4 ) { } ( )( ) ( ) ({ }4 41 1 1 1 1 3 1 2
4 m L t L m L L t

a b− − − −Π = 4c
 

 

mass: { } { }40 1m m mb=  40 1 b= +  4 1b = −  

time: { } { }420 1t t t c−−=  40 1 2c= − −  4
1
2

c = −  

length: 
{ } { }4 4 430 1L L L L La b c−−=  4 4

1
4 2

0 1 3
0 1 3

a b
a

4c= − + − +

= − + + −
 4

3
2

a = −  

which yields 

Π4: 4 3
2h g

µ

ρ
Π =   
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We recognize this Π as the inverse of a kind of Reynolds number. We also split the 
h terms to separate them into a length scale and (when combined with g) a velocity 
scale. The final form is 

Modified Π4 = a Reynolds number: 4

h ghρ
µ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: , ,
h ghV d Df

h hgh
ρ

µ

 
=   

 
 (2) 

 
Discussion You may choose different repeating variables, and may generate 
different nondimensional groups. If you do the algebra correctly, your answer is not 
“wrong” – you just may not get the same dimensionless groups. 
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7-91 
Solution We are to find a dimensionless relationship among the given 
parameters.  
 
Assumptions 1 The given parameters are the only ones relevant to the flow at hand. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 

Step 1 There are seven parameters in this problem; n = 7, 

List of relevant parameters: ( )empty , , , , ,           7t f d D h g nρ µ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

tempty d D ρ µ h g 

{ }1t  { }1L  { }1L  { }1 3m L−  { }1 1 1m L t− −  { }1L  { }1 2L t−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  7 3 4k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick length 
scale h, fluid density ρ, and gravitational constant g. (Note: these are the same 
repeating parameters as in Problem 7-90.) 

Repeating parameters: , , and h gρ   
 

Step 5 The Πs are generated. We leave out the details since the algebra is 
trivial and can be done by inspection in most cases. The dependent Π is 

Π1: 1 empty
gt
h

Π =   

The rest of the Πs are identical to those of Problem 7-90. 
 
Step 6 We write the final functional relationship as 

Relationship between Πs: empty , ,
h ghg d Dt f

h h h
ρ

µ

 
=   

 
 (2) 

 

Discussion You may choose different repeating variables, and may generate 
different nondimensional groups. If you do the algebra correctly, your answer is not 
“wrong” – you just may not get the same dimensionless groups. 
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7-92 
Solution We are to calculate the temperature of water in a model test to ensure 
similarity with the prototype, and we are to predict the time required to empty the 
prototype tank.  
 
Assumptions 1 The parameters specified in Problem 7-91 are the only parameters 
relevant to the problem. 2 The model and prototype are geometrically similar. 
 
Properties For ethylene glycol at 60oC, ν = µ/ρ = 4.75×10-6 m2/s (given). 
 
Analysis  
(a) We use the functional relationship obtained in Problem 7-91, 

Dimensionless relationship: empty , ,
h ghg d Dt f

h h h
ρ

µ

 
=   

 
 (1) 

Since the model and prototype are geometrically similar, (d/h)model = (d/h)prototype and 
(D/h)model = (D/h)prototype. Thus, we are left with only one Π to match to ensure 
similarity. Namely, the Reynolds number parameter in Eq. 1 must be matched 
between model and prototype. Since g remains the same in either case, and using “m” 
for model and “p” for prototype, 

Similarity: 

3
2

p pm

m p mm p

  or  
hh gh h gh
h

ρρ ρ ρ
µ µ µ µ

     
= =             

 (2) 

We recognize that ν = µ/ρ, and we know that hp/hm = 4. Thus, Eq. 2 reduces to 

Similarity: ( )
3

32
p 6 2 7 22

m p
m

4.75 10  m /s 4 5.94 10  m /s
h
h

ν ν

−
−

− − 
= = × = × 

 
 (3) 

For similarity we need to find the temperature of water where the kinematic viscosity 
is 5.94×10-7 m2/s. By interpolation from the property tables, the designers 
should run the model tests at a water temperature of 45.8oC. 
 

(b) At dynamically similar conditions, Eq. 1 yields 

At dynamically similar conditions:
 

p
empty empty empty,p empty,m

mp m

    4.53 min 4
hg gt t t t

h h h
   

= → = = =      
   

9.06 min

 

(5) 

 
Discussion We set up Eqs. 3 and 5 in terms of ratios of hp to hm so that the actual 
dimensions are not needed – just the ratio is needed, and it is given. 
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7-93 
Solution For the simplified case in which V depends only on h and g, we are to 
determine how V increases when h is doubled. 
 
Assumptions 1 The given parameters are the only ones relevant to the problem. 
 
Analysis We employ the dimensional analysis results of Problem 7-90. Dropping d, D, 
ρ, and µ from the list of parameters, we are left with n = 3, 

List of relevant parameters:  ( ),           3V f h g n= = (1) 

We perform the analysis in our heads –only one Π remains, and it is therefore set to a 
constant. The final result of the dimensional analysis is 

Relationship between Πs: constantV
gh

=  (2) 

Thus, when h is doubled, we can easily calculate the factor by which V increases, 

Increase in V: 2 1 2
2 1 1

12 1

  or  2
V V h

V V V
hgh gh

= = =  (3) 

Thus, when h increases by a factor of 2, V increases by a factor of 2 . 
 
Discussion We don’t need to know the constant in Eq. 2 to solve the problem. 
However, it turns out that the constant is 2  (see Chap. 5). 

  
 
7-94 
Solution We are to verify the dimensions of particle relaxation time τp, and 
then identify the established dimensionless parameter formed by 
nondimensionalization of τp. 
 
Analysis  First we obtain the primary dimensions of τp, 

Primary dimensions of τp: { } { }
2

3
m L
L

m
Lt

pτ

 ×  = = 
 
  

t   

A characteristic time scale for the air flow is L/V. Thus, we nondimensionalize τp, 

Nondimensionalized particle relaxation time: 
2

*
18

p p
p p

d V
L

ρ
τ τ

µ
= =   

From Table 7-5 we recognize this as the Stokes number, Stk, 

Stokes number: 
2

Stk
18

p pd V
L

ρ
µ

=   

 

Discussion Stokes number is useful when studying the flow of aerosol particles. 
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7-95 
Solution We are to compare the primary dimensions of each property in mass-
based and force-based primary dimensions, and discuss.  
 
Analysis From previous problems and examples in this chapter, we can write 
down the primary dimensions of each property in the mass-based system. We use the 
fundamental definitions of these quantities to generate the primary dimensions in the 
force-based system: 
 

(a) For pressure P the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ } 2

m
t L

P  =  
 

 { } 2

force F
area L

P   = =  
  





 

 

(b) For moment M  the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ }
2

2

Lm
t

M
 

=  
 

 { } { }force moment arm FLM = × = { }  

 

(c) For energy E the primary dimensions are 
 

Mass-based primary dimensions Force-based primary dimensions 

{ }
2

2

Lm
t

E
 

=  
 

 
{ } { } { }force distance FLE = × =  

We see that (in these three examples anyway), the forced-base cases have only two 
primary dimensions represented (F and L), whereas the mass-based cases have three 
primary dimensions represented (m, L, and t). Some authors would prefer the force-
based system because of its reduced complexity when dealing with forces, pressures, 
energies, etc.  
 
Discussion Not all variables have a simpler form in the force-based system. Mass 
itself for example has primary dimensions of {m} in the mass-based system, but has 
primary dimensions of {Ft2/L} in the force-based system. In problems involving 
mass, mass flow rates, and/or density, the force-based system may not have any 
advantage. 

  
 
 
7-96 
Solution The pressure difference between the inside of a soap bubble and the 
outside air is to be analyzed with dimensional analysis and the method of repeating 
variables using the force-based system of primary dimensions. 
 
Assumptions 1 The soap bubble is neutrally buoyant in the air, and gravity is not 
relevant. 2 No other variables or constants are important in this problem. 
 
Analysis The step-by-step method of repeating variables is employed. 
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Step 1 There are three variables and constants in this problem; n = 3, 

 ( ),           3sP f R nσ∆ = =  (1) 

 
Step 2 The primary dimensions of each parameter are listed. The dimensions of 
pressure are force per area and those of surface tension are force per length. 
 

∆P R σs 

{ }1 2F L−  { }1L  { }1 1F L−  
 
Step 3 As a first guess, j is set equal to 2, the number of primary dimensions 
represented in the problem (F and L). 

Reduction:  2j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  3 2 1k n j= − = − =  

 
Step 4 We need to choose two repeating parameters since j = 2. Our only choices 
here are R and σs since ∆P is the dependent variable. 
 
Step 5 The dependent Π is generated:  

1 1
1

a b
sPR σΠ = ∆  { } { } ( ) ( ){ }1

10 0 1 2 1 1
1 F L F L L F L

ba− −Π = =  

 

force: { } { }10 1F F Fb=  10 1 b= +  1 1b = −  

length: 
{ } { }1 10 2L L L La b−−=  1 1

1 1

0 2
2

a b
a b
= − + −
= +

 1 1a =  

Eq. 1 thus becomes 

Π1: 1
s

PR
σ
∆

Π =  (2) 

From Table 7-5, the established nondimensional parameter most similar to Eq. 2 is 
the Weber number, defined as a pressure times a length divided by surface 
tension. There is no need to further manipulate this Π. 
 
Step 6 We now write the functional relationship between the nondimensional 
parameters. Since there is only one Π, it is a function of nothing, which means it must 
be a constant, 

Relationship between Πs:

 ( )1 nothing constant        
s

PR f
σ
∆

Π = = = → constant sP
R
σ

∆ =  (3) 
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The result using the force-based system of primary dimensions is indeed identical to 
the previous result using the mass-based system.  
 
Discussion Because only two primary dimensions are represented in the problem 
when using the force-based system, the algebra is in fact a lot easier. 

  
 
 
7-97 
Solution We are to a third established nondimensional parameter that is formed 
by the product or ratio of two given established nondimensional parameters.  
 
Analysis  
(a) The product of Reynolds number and Prandtl number yields 

Reynolds number times Prandtl number: Re Pr P Pc LVLV
k k
µ ρρ

µ
× = × =

c
 (1) 

We recognize Eq. 1 as the Peclet number, 

Peclet number: Pe Re Pr PLVc LV
k

ρ
α

= × = =  (2) 

 

(b) The ratio of Schmidt number and Prandtl number yields 

Schmidt number divided by Prandtl number: Sc
Pr

AB

P P AB

D k
c c D

k

µ
ρ

µ ρ
= =  (3) 

We recognize Eq. 3 as the Lewis number, 

Lewis number: ScLe
Pr P AB AB

k
c D D

α
ρ

= = =  (4) 

 

(c) The product of Reynolds number and Schmidt number yields 

Reynolds number times Schmidt number: Re Sc
AB AB

LV LV
D D

ρ µ
µ ρ

× = × =  (5) 

We recognize Eq. 5 as the Sherwood number, 

Sherwood number: Sh Re Sc
AB

LV
D

= × =  (6) 

 
Discussion Can you find any other such combinations from Table 7-5? 
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7-98 
Solution We are to determine the relationship between four established 
nondimensional parameters, and then try to form the Stanton number by some 
combination of only two other established dimensionless parameters.  
 
Analysis We manipulate Re, Nu, and Pr, guided by the known result. After 
some trial and error, 

Stanton number: NuSt
Re Pr P p

Lh
hk

cVL c V
k
µρ ρ

µ

= = =
× ×

 (1) 

We recognize from Table 7-5 (or from Problem 7-97) that Peclet number is equal to 
the product of Reynolds number and Prandtl number. Thus, 

Stanton number: NuSt
Pe P p

Lh
hk

LVc c V
k

ρ ρ
= = =  (2) 

 
Discussion Not all named, established dimensionless parameters are independent 
of other named, established dimensionless parameters. 

  
 
 
7-99 
Solution We are to find the functional relationship between the given 
parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis  First we do some thinking. If we imagine traveling at the same 
speed as the bottom plate, the flow would be identical to that of Problem 7-56 except 
that the top plate speed would be (Vtop – Vbottom) instead of just V. The step-by-step 
method of repeating variables is otherwise identical to that of Problem 7-56, and the 
details are not included here. The final functional relationship is 

Relationship between Πs: 
top bottom

Re,u yf
V V h

 = − 



 (1) 

where 

Reynolds number: 
( )top bottomRe
V Vρ

µ

−
=

h
 (2) 

 
Discussion It is always wise to look for shortcuts like this to save us time. 
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7-100 
Solution We are to determine the primary dimensions of electrical charge.  
 
Analysis The fundamental definition of electrical current is charge per unit 
time. Thus, 

Primary dimensions of charge: { } { } { }current timeq = × = I t  (1) 

Or, in exponent form, {q} = {t1 I1}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be 
expressed in terms of primary dimensions. 

  
 
 
7-101 
Solution We are to determine the primary dimensions of electrical capacitance.  
 
Analysis Electrical capacitance C is measured in units of farads (F). By 
definition, a one-farad capacitor with an applied electric potential of one volt across it 
will store one coulomb of electrical charge. Thus, 

Primary dimensions of capacitance:

 { } { } 2

3

I tcharge / voltage
mL
t I

C

 
    = = =  

  
  

2 4

2

I t
mL   (1) 

where the primary dimensions of voltage are obtained from Problem 7-10, and those 
of electric charge are obtained from Problem 7-100. Or, in exponent form, {C} = {m-1 

L-2 t4 I2}. 
 
Discussion We see that all dimensions, even those of electrical properties, can be 
expressed in terms of primary dimensions. 
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7-102 
Solution We are to determine the primary dimensions of electrical time 
constant RC, and discuss the significance of our result.  
 
Analysis The primary dimensions of electrical resistance are obtained from 
Problem 7-11. Those of electrical capacitance C are obtained from Problem 7-101. 
Thus, 

Primary dimensions of electrical time constant RC:

 { } { } { }
2 2 4

3 2 2

mL I tresistance capacitance
t I mL

RC
 

= × = × 
 

t=  (1) 

Thus we see that the primary dimensions of RC are those of time. This explains why a 
resistor and capacitor in series is often used in timing circuits. 
 
Discussion The cut-off frequency of the low-pass filter of Fig. P7-102 is 
proportional to 1/R⋅C. If the resistor and the capacitor were to swap places we would 
have a high-pass rather than a low-pass filter. 

  
 
 
7-103 
Solution We are to determine the primary dimensions of both sides of the 
equation, and we are to verify that the equation is dimensionally homogeneous.  
 
Analysis The primary dimensions of the time derivative (d/dt) are 1/time. The 
primary dimensions of capacitance are current2×time4 / (mass×length2), as obtained 
from Problem 7-101. Thus both sides of the equation can be written in terms of 
primary dimensions, 

{ } { }currentI =  { } { }II =  

{ }

2

2 4 3

2

mass length
current time current time current

timemass length
dEC
dt

 ×
 × ×= = 

× 
  

 { }IdEC
dt

  = 
 

 

Indeed, both sides of the equation have the same dimensions, namely {I}. 
 
Discussion Current is one of our seven primary dimensions. These results verify 
our algebra in Problem 7-101. 

  
 
 
7-104 
Solution We are to find the functional relationship between the given 
parameters, and then answer some questions about scaling. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis 

7-94 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 7 – Dimensional Analysis 

(a) The step-by-step method of repeating variables is employed to obtain the 
nondimensional parameters (the Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters: ( ), ,           4P f V D nδ ρ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

δP ρ V  D 

{ }1 1 2m L t− −  { }1 3m L−  { }3 1L t−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We only have one 
choice in this problem, since there are only three independent parameters on the right-
hand side of Eq. 1, 

Repeating parameters: ρ, V , and D  

 
Step 5 The dependent Π is generated:  

1 1
1

a b cP V Dδ ρΠ = 1 ) { } ( )( ) ( ) ({ }1 11 1 2 1 3 3 1 1
1 m L t m L L t L

a b− − − −Π = 1c  

 

mass: { } { }110m m a+=  10 1 a= +  1 1a = −  

time: { } { }120t t b− −=  10 2 b= − −  1 2b = −  

length: { } { }1 1 13 30 1L L L L La b c−−=  1 10 1 3 3a b 1c= − − + +  1 4c =  

The dependent Π is thus 

Π1: 
4

1 2

D P
V
δ

ρ
Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if 
we set the Π equal to a constant. We write the final functional relationship as 
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Relationship between Πs: 
4

1 2 constantD P
V
δ

ρ
Π = =  (2) 

 

(b) We re-write Eq. 2 as 

Equation for δP: 
2

4constant VP
D
ρδ =  (3) 

Thus, if we double the size of the cyclone, the pressure drop will decrease by a 
factor of 24 = 16. 
 

(c) Also from Eq. 3 we see that if we double the volume flow rate, the pressure 
drop will increase by a factor of 22 = 4. 
 
Discussion The pressure drop would be smallest for the largest cyclone operating 
at the smallest volume flow rate. (This agrees with our intuition.) 

  
 
 
7-105 
Solution We are to find the functional relationship between the given 
parameters, and then answer some questions about scaling. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis 
(a) The step-by-step method of repeating variables is employed to obtain the 
nondimensional parameters (the Πs). 
 
Step 1 There are five parameters in this problem; n = 5, 

List of relevant parameters: ( ), , ,           5p f pw f q E D nµ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

w qp Ef µ Dp 

{ }1 1L t−  { }1 1I t  { }1 1 3 1m L t I− −  { }1 1 1m L t− −  { }1L  
where the primary dimensions of voltage are obtained from Problem 7-10, and those 
of electric charge are obtained from Problem 7-100. 
 
Step 3 As a first guess, j is set equal to 4, the number of primary dimensions 
represented in the problem (m, L, t, and I). 

Reduction:  4j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 4 1k n j= − = − =  
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Step 4 We need to choose four repeating parameters since j = 4. We only have one 
choice in this problem, since there are only four independent parameters on the right-
hand side of Eq. 1, 

Repeating parameters: qp, E, Dp, and µ  

 
Step 5 The dependent Π is generated:  

1 1 1
1

a b c d1
p f pwq E DµΠ =  { } ( )( ) ( ) ( ) ( ){ }1 1 11 1 1 1 1 1 3 1 1 1 1 1

1 L t I t m L t I m L t L
a b c− − − − −Π =

1d
 

 

current: { } { }1 10I I Ia b−=  1 10 a b= −  1 1a b=  

mass: { } { }1 10m m mb c=  1 10 b c= +  1 1c b 1a= − = −  

time: 
{ } { }1 1 130 1t t t t ta b c− −−=  1 10 1 3a b c1= − + − −  1 1

1

1
1

a b
c
= = −
=

 

length: { } { }1 1 10 1L L L L Lb c d−=  1 10 1 b c d1= + − +  1 1d =  

The dependent Π is thus 

Π1: 1
p

p f

w D
q E
µ

Π =   

 
Step 6 Since there is only one Π, it is a function of nothing. This is only possible if 
we set the Π equal to a constant. We write the final functional relationship as 

Relationship between Πs: 1 constantp

p

w D
q E
µ

Π = =  (2) 

 

(b) We re-write Eq. 2 as 

Equation for w: constant p f

p

q E
w

Dµ
=  (3) 

Thus, if we double the electric field strength, the drift velocity will increase by a 
factor of 2. 
 

(c) Also from Eq. 3 we see that if we double the particle size, the drift velocity 
will decrease by a factor of 2. 
 
Discussion These results agree with our intuition. Certainly we would expect the 
drift velocity to increase if we increase the field strength. Also, larger particles have 
more aerodynamic drag, so for the same charge, we would expect a larger dust 
particle to drift more slowly than a smaller dust particle. 
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7-106 
Solution We are to generate a dimensionless functional relationship between 
the given parameters and then compare our results with a known exact analytical 
solution.  
 
Assumptions 1 There is no flow (hydrostatics). 2 The parameters listed here are the 
only relevant parameters in the problem. 
 
Analysis  (a) We perform a dimensional analysis using the method of 
repeating variables. 
 
Step 1 There are five parameters in this problem; n = 6, 

List of relevant parameters: ( ), , , ,           6sh f g D nρ σ φ= =  (1) 

 
Step 2 The primary dimensions of each parameter are listed, 
 

h ρ g σs D φ 

{ }1L  { }1 3m L−  { }1 2L t−  { }1 2m t−  { }1L  { }1  

Note that the dimensions of the contact angle are unity (angles are dimensionless). 
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  6 3 3k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We cannot choose 
φ since it is dimensionless. We choose a length (D) and a density (ρ). We’d rather 
have gravitational constant g than surface tension σs in our Πs. So, we choose 

Repeating parameters: ρ, g, D  

 
Step 5 The dependent Π is generated. Since h has the same dimensions as D, we 
immediately write 

Π1: 1
h
D

Π =   

The first independent Π is generated by combining σs with the repeating 
parameters, 

2 2 2
2

a b c
s g Dσ ρΠ =  { } ( )( ) ( ) ( ){ }2 21 2 1 3 1 2 1

2 m t m L L t L
a b− − −Π =

2c
 

 

mass: { } { }20 1m m ma=  20 1 a= +  2 1a = −  
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time: { } { }220 2t t t b−−=  20 2 2b= − −  2 1b = −  

length: { } { }2 2 230L L L La b c−=  2 2

2 2 2

0 3
3

a b c
c a b

2= − + +
= −

 2 2c = −  

The first independent Π is thus 

Π2: 2 2
s

gD
σ

ρ
Π =   

Finally, the third Π (second independent Π) is simply angle φ itself since it is 
dimensionless, 

Π3: 3 φΠ =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 2 ,sh f
D gD

σ
φ

ρ
 

= 
 

  (2) 

 

(b) From Chap. 2 we see that the exact analytical solution is 

Exact relationship: 4 cossh
gD
σ

φ
ρ

=  (3) 

Comparing Eqs. 2 and 3, we see that they are indeed of the same form. In fact, 

Functional relationship: 1 2constant cosΠ = ×Π × Π3  (4) 

 
Discussion We cannot determine the constant in Eq. 4 by dimensional analysis. 
However, one experiment is enough to establish the constant. Or, in this case we can 
find the constant exactly. Viscosity is not relevant in this problem since there is no 
fluid motion. 
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7-107 
Solution We are to find a functional relationship for the time scale required for 
the liquid to climb up the capillary tube. 
 
Assumptions 1 trise is a function of the same parameters listed in Problem 7-106, but 
there is another relevant parameter. 
 
Analysis Since this is an unsteady problem, the rise time will surely depend 
also on fluid viscosity µ. The list of parameters now involves seven parameters, 

List of relevant parameters: ( )rise , , , , ,           7st f g D nρ σ φ µ= =  (1) 

and we expect four Πs. We choose the same repeating parameters and the algebra is 
similar to that of the previous problem. It turns out that 

Π1: 1 rise
gt
D

Π =   

The second and third Π are the same as those of Problem 7-106. Finally, the fourth Π 
is formed by combining µ with the repeating parameters. We expect some kind of 
Reynolds number. We can do the algebra in our head. Specifically, a velocity scale 
can be formed as gD . Thus, 

Π4: 4 Re
D gDρ
µ

Π = =   

The final functional relationship is 

Relationship between Πs: rise 2 , ,Resgt f
D gD

σ
φ

ρ
 

=  
 

 (2) 

 
Discussion If we would have defined a time scale as /D g , we could have 
written Π1 by inspection as well, saving ourselves some algebra. 

  
 
 
7-108 
Solution We are to use dimensional analysis to find the functional relationship 
between the given parameters. 
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters:  ( ), ,           4I f P c nρ= = (1) 
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Step 2 The dimensions of I are those of power per area. The primary dimensions of 
each parameter are listed, 
 

I P c ρ 

{ }1 3m t−  { }1 1 2m L t− −  { }1 1L t−  { }1 3m L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 3 1k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. The problem is 
that the three independent parameters form a Π all by themselves (c2ρ/P is 
dimensionless). Let’s see what happens if we don’t notice this, and we pick all three 
independent parameters as repeating variables, 

Repeating parameters: , , and P cρ   

 
Step 5 The Π is generated: 

1
a b cI P cρΠ = ×  { } ( )( ) ( ) ( ){ }1 3 1 1 2 1 3 1 1

1 m t m L t m L L t
a b− − − − −Π =

c
 

 

mass: { } { }0 1m m m ma b=  0 1 a b= + +  1a b= − −  

time: { } { }0 3 2t t t ta c− − −=  
0 3 2

3 2
a c

c a
= − − −
= − −

 1 2c b= − +  

length: { } { }0 3L L L La b c− −=  
0 3

3
a b

c a b
c= − − +

= +
 1 2c b= − +  

This is a situation in which two of the equations agree, but we cannot solve for unique 
exponents. If we knew b, we could get a and c. The problem is that any value of b we 
choose will make the Π dimensionless. For example, if we choose b = 1, we find that 
a = –2 and c = 1, yielding 

Π1 for the case with b = 1: 1 2

I c
P
ρ

Π =   

Since there is only one Π, we write 

Functional relationship for the case with b = 1: 
2

constant PI
cρ

= ×  (2) 

However, if we choose a different value of b, say b = –1, then a = 0 and c = –3, 
yielding 
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Π1 for the case with b = –1: 1 3

I
cρ

Π =   

Since there is only one Π, we write 

Functional relationship for the case with b = –1: 3constantI cρ= ×  (3) 

Similarly, you can come up with a whole family of possible answers, depending on 
your choice of b. We double check our algebra and realize that any value of b works. 
Hence the problem is indeterminate with three repeating variables. 
 We go back now and realize that something is wrong. As stated previously, 
the problem is that the three independent parameters can form a dimensionless group 
all by themselves. This is another case where we have to reduce j by 1. Setting j = 3 – 
1 = 2, we choose two repeating parameters, 

Repeating parameters:  and cρ   

We jump to Step 5 of the method of repeating variables, 
 
Step 5 The first Π is generated: 

1
a bI cρΠ =  { } ( )( ) ( ){ }1 3 1 3 1 1

1 m t m L L t
a b− − −Π =  

 

mass: { } { }0 1m m ma=  0 1 a= +  1a = −  

time: { } { }0 3t t t b− −=  0 3 b= − −  3b = −  

length: { } { }0 3L L La b−=  
0 3

3
a b

b a
= − +
=

 3b = −  

Fortunately, the results for time and length agree. The dependent Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
e fP cρΠ =  { } ( )( ) ( ){ }1 1 2 1 3 1 1

2 m L t m L L t
e f− − − −Π =  

 

mass: { } { }0 1m m me=  0 1 e= +  1e = −  

time: { } { }0 2t t t f− −=  0 2 f= − −  2f = −  

length: { } { }0 1 3L L L Le f− −=  
0 1 3

1 3
e f

f e
= − − +
= +

 
2f = −  

The second Π is thus 
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Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 2

I Pf
c cρ ρ

 
=  

 
 (4) 

 

(b) We try the force-based primary dimension system instead. 
 
Step 1 There are four parameters in this problem; n = 4, 

List of relevant parameters:  ( ), ,           4I f P c nρ= = (5) 

 
Step 2 The dimensions of I are those of power per area. The primary dimensions of 
each parameter are listed, 
 

I P c ρ 

{ }1 1 1F L t− −  { }1 2F L−  { }1 1L t−  { }1 2 4F t L−  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (F, L, and t). Again, however, the three independent 
parameters form a dimensionless group all by themselves. Thus we lower j by 1. 

Reduction:  2j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  4 2 2k n j= − = − =  

 
Step 4 We need to choose two repeating parameters since j = 2. We pick the same 
two parameters as in Part (a), 

Repeating parameters:  and cρ   

 
Step 5 The first Π is generated: 

1
b cI cρΠ = ×  { } ( )( ) ( ){ }1 1 1 1 2 4 1 1

1 F L t F t L L t
b c− − − −Π =  

 

force: { } { }0 1F F Fb=  0 1 b= +  1b = −  

time: { } { }0 1 2t t t tb c− −=  
0 1 2

1 2
b c

c b
= − + −
= − +

 
3c = −  

length: { } { }0 1 4L L L Lb c− −=  
0 1 4

1 4
b c

c b
= − − +
= +

 
3c = −  
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Again the two results for length and time agree. The dependent Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
e fP cρΠ = ×  { } ( )( ) ( ){ }1 2 1 2 4 1 1

2 F L F t L L t
e f− − −Π =  

 

force: { } { }0 1F F Fe=  0 1 e= +  1e = −  

time: { } { }0 2t t te f− −=  
0 2

2
e f

f e
= − −
= −

 
2f = −  

length: { } { }0 2 4L L L Le f− −=  
0 2 4

2 4
e f

f e
= − − +
= +

 
2f = −  

The second Π is thus 

Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 2

I Pf
c cρ ρ

 
=  

 
 (6) 

 
Discussion Equations 4 and 6 are the same. This exercise shows that you should 
get the same results using mass-based or force-based primary dimensions. 

  
 
 
7-109 
Solution We are to find the dimensionless relationship between the given 
parameters.  
 
Assumptions 1 The given parameters are the only relevant ones in the problem. 
 
Analysis The step-by-step method of repeating variables is employed to obtain 
the nondimensional parameters (the Πs). 
 
Step 1 There are now five parameters in this problem; n = 5, 

List of relevant parameters:  ( ), , ,           5I f P c r nρ= = (1) 

 
Step 2 The dimensions of I are those of power per area. The primary dimensions of 
each parameter are listed, 
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I P c ρ r 

{ }1 3m t−  { }1 1 2m L t− −  { }1 1L t−  { }1 3m L−  { }1L  
 
Step 3 As a first guess, j is set equal to 3, the number of primary dimensions 
represented in the problem (m, L, and t). 

Reduction:  3j =  

If this value of j is correct, the expected number of Πs is 

Number of expected Πs:  5 3 2k n j= − = − =  

 
Step 4 We need to choose three repeating parameters since j = 3. We pick the three 
simplest independent parameters (r instead of P), 

Repeating parameters: , , and r cρ   

 
Step 5 The first Π is generated: 

1
a b cI r cρΠ = ×  { } ( )( ) ( ) ( ){ }1 3 1 1 3 1 1

1 m t L m L L t
a b− −Π =

c−  

 

mass: { } { }0 1m m mb=  0 1 b= +  1b = −  

time: { } { }0 3t t t c− −=  0 3 c= − −  3c = −  

length: { } { }0 3L L L La b c−=  
0 3

3
a b

a b c
c= − +

= −
 

0a =  

The first Π is thus 

Π1: 1 3

I
cρ

Π =   

We form the second Π with sound pressure P, 

2
d e fP r cρΠ = ×  { } ( )( ) ( ) ( ){ }1 1 2 1 1 3 1 1

2 m L t L m L L t
d e− − − −Π =

f
 

 

mass: { } { }0 1m m me=  0 1 e= +  1e = −  

time: { } { }0 2t t t f− −=  0 2 f= − −  2f = −  

length: { } { }0 1 3L L L L Ld e f− −=  
0 1 3

1 3
d e f

d e f
= − + − +
= + −

 
0d =  

The second Π is thus 
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Π2: 2 2

P
cρ

Π =   

 
Step 6 We write the final functional relationship as 

Relationship between Πs: 3 2

I Pf
c cρ ρ

 
=  

 
 (2) 

 
Discussion This is an interesting case in which we added another independent 
parameter (r), yet this new parameter does not even appear in the final functional 
relationship! The list of independent parameters is thus over specified. (It turns out 
that P is a function of r, so r is not needed in the problem.) The result here is identical 
to the result of Problem 7-108. It turns out that the function in Eq. 2 is a constant 
times Π2

2, which yields the correct analytical equation for I, namely 

Analytical result: 
2

constant PI
cρ

= ×  (3) 
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