
Chapter 3  Pressure and Fluid Statics 
 
Fluid Statics: Hydrostatic Forces on Plane and Curved Surfaces 
 
3-53C The resultant hydrostatic force acting on a submerged surface is the resultant of the pressure forces 
acting on the surface. The point of application of this resultant force is called the center of pressure. 
 
3-54C Yes, because the magnitude of the resultant force acting on a plane surface of a completely 
submerged body in a homogeneous fluid is equal to the product of the pressure PC at the centroid of the 
surface and the area A of the surface. The pressure at the centroid of the surface is CC ghPP ρ+= 0  where 

 is the vertical distance of the centroid from the free surface of the liquid.   Ch
 
3-55C There will be no change on the hydrostatic force acting on the top surface of this submerged 
horizontal flat plate as a result of this rotation since the magnitude of the resultant force acting on a plane 
surface of a completely submerged body in a homogeneous fluid is equal to the product of the pressure PC 
at the centroid of the surface and the area A of the surface. 
 
3-56C Dams are built much thicker at the bottom because the pressure force increases with depth, and the 
bottom part of dams are subjected to largest forces. 
 
3-57C The horizontal component of the hydrostatic force acting on a curved surface is equal (in both 
magnitude and the line of action) to the hydrostatic force acting on the vertical projection of the curved 
surface. 
 
3-58C The vertical component of the hydrostatic force acting on a curved surface is equal to the hydrostatic 
force acting on the horizontal projection of the curved surface, plus (minus, if acting in the opposite 
direction) the weight of the fluid block. 
 
3-59C The resultant hydrostatic force acting on a circular surface always passes through the center of the 
circle since the pressure forces are normal to the surface, and all lines normal to the surface of a circle pass 
through the center of the circle. Thus the pressure forces form a concurrent force system at the center, 
which can be reduced to a single equivalent force at that point. If the magnitudes of the horizontal and 
vertical components of the resultant hydrostatic force are known, the tangent of the angle the resultant 
hydrostatic force makes with the horizontal is HV FF /tan =α . 
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Chapter 3  Pressure and Fluid Statics 
3-60 A car is submerged in water. The hydrostatic force on the door and its line of action are to be 
determined for the cases of the car containing atmospheric air and the car is filled with water.  

Assumptions 1 The bottom surface of the lake is horizontal. 2 The door can be approximated as a vertical 
rectangular plate. 3 The pressure in the car remains at atmospheric value since there is no water leaking in, 
and thus no compression of the air inside. Therefore, we can ignore the atmospheric pressure in 
calculations since it acts on both sides of the door. 

Properties We take the density of lake water to be 1000 kg/m3 throughout. 

Analysis (a) When the car is well-sealed and thus the pressure inside the car is the atmospheric pressure,  
the average pressure on the outer surface of the door is the pressure at the centroid (midpoint) of the 
surface, and is determined to be 
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Door, 1.1 m × 0.9 m

s = 8 m 

Then the resultant hydrostatic force on the door becomes 

        kN  83.0 =×==  m) 1.1m  9.0)(kN/m 88.83( 2APF aveR

The pressure center is directly under the midpoint of the plate,  and its 
distance from the surface of the lake is determined to be   
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(b) When the car is filled with water, the net force normal to the surface of the door is zero since the 
pressure on both sides of the door will be the same. 

Discussion Note that it is impossible for a person to open the door of the car when it is filled with 
atmospheric air. But it takes no effort to open the door when car is filled with water.  
 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution 
permitted only to teachers and educators for course preparation.  If you are a student using this Manual, you 
are using it without permission.   

3-36



Chapter 3  Pressure and Fluid Statics 
3-61E The height of a water reservoir is controlled by a cylindrical gate hinged to the reservoir. The 
hydrostatic force on the cylinder and the weight of the cylinder per ft length are to be determined. √ Feb05 

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus 
it can be ignored in calculations for convenience. 

Properties We take the density of water to be 62.4 lbm/ft3 throughout.  

Analysis  (a) We consider the free body diagram of the liquid block enclosed by the circular surface of the 
cylinder and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and 
horizontal plane surfaces as well as the weight of the liquid block per ft length of the cylinder are:  
Horizontal force on vertical surface:   
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Vertical force on horizontal surface (upward):   
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Weight of fluid block per ft length (downward): 
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Therefore, the net upward vertical force is 

lbf 1818541872 =−=−= WFF yV  

Then the magnitude and direction of the hydrostatic force acting on the cylindrical surface become 

flb  2521=+=+= 2222 18181747VHR FFF  

°=→=== 1.46        041.1
lbf 1747
lbf 1818tan θθ

H

V

F
F

 

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 2521 lbf per ft length of the 
cylinder, and its line of action passes through the center of the cylinder making an angle 46.1° upwards 
from the horizontal. 
 
(b) When the water level is 15-ft high, the gate opens and the reaction force at the bottom of the cylinder 
becomes zero. Then the forces other than those at the hinge acting on the cylinder are its weight, acting 
through the center, and the hydrostatic force exerted by water. Taking a moment about the point A where 
the hinge is and equating it to zero gives 

         (per ft) lbf  1817=°==→=− 146sinlbf)  (2521sin         0sin .FWRWRF RcylcylR θθ

Discussion The weight of the cylinder per ft length is determined to be 1817 lbf, which corresponds to a 
mass of 1817 lbm, and to a density of 145 lbm/ft3 for the material of the cylinder.   
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Chapter 3  Pressure and Fluid Statics 
3-62 An above the ground swimming pool is filled with water. The hydrostatic force on each wall and the 
distance of the line of action from the ground are to be determined, and the effect of doubling the wall 
height on the hydrostatic force is to be assessed.  

Assumptions The atmospheric pressure acts on both sides of the wall of the pool, and thus it can be ignored 
in calculations for convenience. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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Then the resultant hydrostatic force on each wall becomes 

kN  44.1≅=×== N 145,44m) 5.1m 4)(N/m 5.7357( 2APF aveR  

The line of action of the force passes through the pressure center, which is 2h/3 from the free surface and 
h/3 from the bottom of the pool. Therefore, the distance of the line of action from the ground is 

m  0.50===
3
5.1

3
hyP   (from the bottom) 

If the height of the walls of the pool is doubled, the hydrostatic force quadruples since    

2/))(2/( 2gwhwhhgAghF CR ρρρ =×==  

and thus the hydrostatic force is proportional to the square of the wall height, h2.  
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Chapter 3  Pressure and Fluid Statics 
3-63E A dam is filled to capacity. The total hydrostatic force on the dam, and the pressures at the top and 
the bottom are to be determined. 

Assumptions The atmospheric pressure acts on both sides of the dam, and thus it can be ignored in 
calculations for convenience. 

Properties We take the density of water to be 62.4 lbm/ft3 throughout. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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Then the resultant hydrostatic force acting on the dam becomes 

lbf 101.50 9×=×== ft) 1200ft 200)(lbf/ft 6240( 2APF aveR  

Resultant force per unit area is pressure, and its value at the top and the bottom of the dam becomes 

   =P ρ  2lbf/ft 0=toptop gh
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Chapter 3  Pressure and Fluid Statics 
3-64 A room in the lower level of a cruise ship is considered. The hydrostatic force acting on the window 
and the pressure center are to be determined. 

Assumptions The atmospheric pressure acts on both sides of the window, and thus it can be ignored in 
calculations for convenience. 

Properties The specific gravity of sea water is given to be 1.025, and thus its density is 1025 kg/m3. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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Then the resultant hydrostatic force on each wall becomes 

N  3554==== ]4/m) 3.0()[N/m 276,50(]4/[ 222 ππDPAPF aveaveR  

The line of action of the force passes through the pressure center, 
whose vertical distance from the free surface is determined from   
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Discussion Note that for small surfaces deep in a liquid, the pressure center nearly coincides with the 
centroid of the surface.   
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Chapter 3  Pressure and Fluid Statics 
3-65 The cross-section of a dam is a quarter-circle. The hydrostatic force on the dam and its line of action  
are to be determined.  

Assumptions The atmospheric pressure acts on both sides of the dam, and thus it can be ignored in 
calculations for convenience. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the dam 
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane 
surfaces as well as the weight of the liquid block are:  
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Vertical force on horizontal surface is zero since it coincides with 
the free surface of water. The weight of fluid block per m length is 
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Then the magnitude and direction of the hydrostatic force acting on the surface of the dam become 
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Therefore, the line of action of the hydrostatic force passes through the center of the curvature of the dam, 
making 57.5° downwards from the horizontal. 
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Chapter 3  Pressure and Fluid Statics 
3-66 A rectangular plate hinged about a horizontal axis along its upper edge blocks a fresh water channel. 
The plate is restrained from opening by a fixed ridge at a point B. The force exerted to the plate by the ridge 
is to be determined. √EES 

Assumptions The atmospheric pressure acts on both sides of the plate, and thus it can be ignored in 
calculations for convenience. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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Then the resultant hydrostatic force on each wall becomes 

kN  392=×== m) 5m 4)( kN/m62.19( 2APF aveR  

The line of action of the force passes through the pressure center, 
which is 2h/3 from the free surface,   
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Taking the moment about point A and setting it equal to zero gives   

ABFysFM PRA ridge)(             0 =+→=∑  

Solving for Fridge and substituting, the reaction force is determined to be   
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Chapter 3  Pressure and Fluid Statics 
3-67 Problem 3-66 is reconsidered. The effect of water depth on the force exerted on the plate by the ridge 
as the water depth varies from 0 to 5 m in increments of 0.5 m is to be investigated.  

g=9.81 "m/s2" 
rho=1000 "kg/m3" 
s=1"m" 
 
w=5 "m" 
A=w*h 
P_ave=rho*g*h/2000 "kPa" 
F_R=P_ave*A "kN" 
y_p=2*h/3 
F_ridge=(s+y_p)*F_R/(s+h) 
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Chapter 3  Pressure and Fluid Statics 
3-68E The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point A. The 
required weight W for the gate to open at a specified water height is to be determined. √EES 

Assumptions 1 The atmospheric pressure acts on both sides of the gate, and thus it can be ignored in 
calculations for convenience. 2 The weight of the gate is negligible. 

Properties We take the density of water to be 62.4 lbm/ft3 throughout. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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Then the resultant hydrostatic force acting on the dam becomes 

lbf 22,464ft) 5ft 12)(lbf/ft 4.374( 2 =×== APF aveR  

The line of action of the force passes through the pressure center, 
which is 2h/3 from the free surface,   
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Taking the moment about point A and setting it equal to zero gives   

ABWysFM PRA =+→=∑ )(             0  

Solving for W and substituting, the required weight is determined to be   
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+

=
+
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ft 8

ft )83(
R

P F
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ys
W  

Discussion Note that the required weight is inversely proportional to the distance of the weight from the 
hinge. 
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Chapter 3  Pressure and Fluid Statics 
3-69E The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point A. The 
required weight W for the gate to open at a specified water height is to be determined. √EES 

Assumptions 1 The atmospheric pressure acts on both sides of the gate, and thus it can be ignored in 
calculations for convenience.  2 The weight of the gate is negligible. 

Properties We take the density of water to be 62.4 lbm/ft3 throughout. 

Analysis The average pressure on a surface is the pressure at the 
centroid (midpoint) of the surface, and is determined to be 
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B Then the resultant hydrostatic force acting on the dam becomes 

lbf 9984ft) 5ft 8)(lbf/ft 6.249( 2 =×== APF aveR  

The line of action of the force passes through the pressure center, 
which is 2h/3 from the free surface,   
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Taking the moment about point A and setting it equal to zero gives   

ABWysFM PRA =+→=∑ )(             0  

Solving for W and substituting, the required weight is determined to be   

lbf 15,390=
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ft )333.57(
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Discussion Note that the required weight is inversely proportional to the distance of the weight from the 
hinge.   
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Chapter 3  Pressure and Fluid Statics 
3-70 Two parts of a water trough of semi-circular cross-section are held together by cables placed along the 
length of the trough. The tension T in each cable when the trough is full is to be determined.  

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in 
calculations for convenience. 2 The weight of the trough is negligible. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis To expose the cable tension, we consider half of the trough whose cross-section is quarter-circle. 
The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of the 
liquid block are:  
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The vertical force on the horizontal surface is zero, since it coincides 
with the free surface of water. The weight of fluid block per 3-m length is 
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Then the magnitude and direction of the hydrostatic force acting on the surface of the 3-m long section of 
the trough become 
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Therefore, the line of action passes through the center of the curvature of the trough, making 57.5° 
downwards from the horizontal. Taking the moment about point A where the two parts are hinged and 
setting it equal to zero gives   

RRFM RA T=°−→=∑ )5.5790sin(             0  

Solving for T and substituting, the tension in the cable is determined to be   

N  3681=°−=°−= )5.5790sin()N 6851()5.5790sin(RFT  

Discussion This problem can also be solved without finding FR by finding the lines of action of the 
horizontal hydrostatic force and the weight.  
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Chapter 3  Pressure and Fluid Statics 
3-71 Two parts of a water trough of triangular cross-section are held together by cables placed along the 
length of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.  

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in 
calculations for convenience. 2 The weight of the trough is negligible. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The 
water height h at the midsection of the trough and width of the free surface are 
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The hydrostatic forces acting on the vertical and horizontal 
plane surfaces as well as the weight of the liquid block are 
determined as follows:  
 
Horizontal force on vertical surface: 
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The vertical force on the horizontal surface is zero since it coincides with 
the free surface of water. The weight of fluid block per 3-m length is 
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The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side.  
Taking the moment about point A where the two parts are hinged and setting it equal to zero gives   

hhFbWM HA T=+→=∑ 33
             0  

Solving for T and substituting, and noting that h = b, the tension in the cable is determined to be   

N 5511=
+

=
+

=
3

N )82678267(
3

WFHT  
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Chapter 3  Pressure and Fluid Statics 
3-72 Two parts of a water trough of triangular cross-section are held together by cables placed along the 
length of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.  

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in 
calculations for convenience. 2 The weight of the trough is negligible. 

Properties We take the density of water to be 1000 kg/m3 throughout. 

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The 
water height is given to be h = 0.4 m at the midsection of the trough, which is equivalent to the width of the 
free surface b since  tan 45° = b/h = 1. 

The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of 
the liquid block are determined as follows:  
 
Horizontal force on vertical surface:   

W 

0.4 m 

45° 

T b 

A 

FH 
N 2354

m/skg 1
N 1m) 3  m m)(0.4 2/4.0)(m/s 81.9)(kg/m 1000(

)2/(

2
23

=












⋅
×=

==== AhgAghAPFF CavexH ρρ

 

The vertical force on the horizontal surface is zero since it coincides with 
the free surface of water. The weight of fluid block per 3-m length is 

N 2354
m/s kg1
N 1m)/2] m)(0.4 m)(0.4 3)[(m/s 81.9)( kg/m1000(

]2/[

2
23

=










⋅
=

×=== bhwggWFV ρρ V

 

The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side.  
Taking the moment about point A where the two parts are hinged and setting it equal to zero gives   

hhFbWM HA T=+→=∑ 33
             0  

Solving for T and substituting, and noting that h = b, the tension in the cable is determined to be   

N 1569=
+

=
+

=
3

N )23542354(
3

WFHT  
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Chapter 3  Pressure and Fluid Statics 
3-73 A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height 
at which the blocks will start sliding, and the blocks will tip over are to be determined.  

Assumptions The atmospheric pressure acts on both sides of the wall, and thus it can be ignored in 
calculations for convenience. 

Properties The density is given to be 1800 kg/m3 for the mud, and 2700 kg/m3 for concrete blocks. 

Analysis (a) The weight of the concrete wall per unit length (L = 1 m) and the friction force between the 
wall and the ground are 

N 1271)N 4238(3.0

N 4238
m/s kg1
N 1)m 18.02.0)[m/s 81.9)( kg/m2700(

blockfriction

2
323

block

===

=








⋅
××==

WF

gW

µ

ρ V
 
 t =0.2 m 

W  

 A 

h
0.8 m 

Ffriction 

FH 

The hydrostatic force exerted by the mud to the wall is    

N 8829

m/skg 1
N 1) 1 )( 2/)(m/s 81.9)(kg/m 1800(

)2/(

2

2
23

h

hh

AhgAghAPFF CavexH

=












⋅
×=

==== ρρ

 

Setting the hydrostatic and friction forces equal to each other gives  

m  0.38=→=→= hhFFH            1271 8829           2
friction  

(b) The line of action of the hydrostatic force passes through the pressure center, which is 2h/3 from the 
free surface. The line of action of the weight of the wall passes through the midplane of the wall. Taking 
the moment about point A and setting it equal to zero gives   

3/8829)2/(         )3/()2/(             0 3
blockblock htWhFtWM HA =→=→=∑  

Solving for h and substituting, the mud height for tip over is determined to be   

m 0.52=







×
××

=







×
=

3/13/1
block

88292
2.042383

88292
3 tW

h  

Discussion Note that the concrete wall will slide before tipping. Therefore, sliding is more critical than 
tipping in this case.  
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Chapter 3  Pressure and Fluid Statics 
3-74 A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height 
at which the blocks will start sliding, and the blocks will tip over are to be determined.  

Assumptions The atmospheric pressure acts on both sides of the wall, and thus it can be ignored in 
calculations for convenience. 

Properties The density is given to be 1800 kg/m3 for the mud, and 2700 kg/m3 for concrete blocks. 

Analysis (a) The weight of the concrete wall per unit length (L = 1 m) and the friction force between the 
wall and the ground are 

N 2543)N 8476(3.0

N 8476
m/s kg1
N 1)m 18.04.0)[m/s 81.9)( kg/m2700(

blockfriction

2
323

block

===

=








⋅
××==

WF

gW

µ

ρ V
 

 t =0.4 m

W  

 A 

h
0.8 m 

Ffriction 

FH 

The hydrostatic force exerted by the mud to the wall is   

N 8829

m/skg 1
N 1) 1 )( 2/)(m/s 81.9)(kg/m 1800(

)2/(

2

2
23

h

hh

AhgAghAPFF CavexH

=












⋅
×=

==== ρρ

 

Setting the hydrostatic and friction forces equal to each other gives 

m  0.54=→=→= hhFFH            2543 8829           2
friction  

(b) The line of action of the hydrostatic force passes through the pressure center, which is 2h/3 from the 
free surface. The line of action of the weight of the wall passes through the midplane of the wall. Taking 
the moment about point A and setting it equal to zero gives   

3/8829)2/(         )3/()2/(             0 3
blockblock htWhFtWM HA =→=→=∑  

Solving for h and substituting, the mud height for tip over is determined to be   

m 0.76=







×
××

=







×
=

3/13/1
block

88292
3.084763

88292
3 tW

h  

Discussion Note that the concrete wall will slide before tipping. Therefore, sliding is more critical than 
tipping in this case.  
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Chapter 3  Pressure and Fluid Statics 
3-75 A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B 
where the gate is pressed by a spring. The minimum spring force required to keep the gate closed when the 
water level rises to A at the upper edge of the gate is to be determined.  

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus 
it can be ignored in calculations for convenience. 3 The weight of the gate is negligible. 

Properties We take the density of water to be 1000 kg/m3 throughout.  

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate 
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane 
surfaces as well as the weight of the liquid block are determined as follows:  
 
Horizontal force on vertical surface:  

kN 6.176
m/skg 1000

kN 1m) 3  m m)(4 2/3)(m/s 81.9)(kg/m 1000(

)2/(

2
23

=












⋅
×=

==== ARgAghAPFF CavexH ρρ

 

 3-51

Vertical force on horizontal surface (upward):   

kN 2.353
m/skg 1000

kN 1m) 3  m m)(4 3)(m/s 81.9)(kg/m 1000(
2

23

bottom

=












⋅
×=

=== AghAghAPF Cavey ρρ

 

 The weight of fluid block per 4-m length (downwards): 

 kN4.277
m/s kg1000

 kN1/4]m) (3m) 4)[(m/s 81.9)( kg/m1000(

]4/[

2
223

2

=










⋅
=

×==

π

πρρ RwggW V

 

B

A 

Fs

W 

Fy 

Fx
R = 3 m 

Therefore, the net upward vertical force is 

kN 8.754.2772.353 =−=−= WFF yV  

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-
circular section of the gate become 

°=→===

=+=+=

23.2         429.0
kN 6.176
kN 8.75tan

kN 2.192kN) 8.75(kN) 6.176( 2222

θθ
H

V

VHR

F
F

FFF  
 

Therefore, the magnitude of the hydrostatic force acting on the gate is 192.2 kN, and its line of action 
passes through the center of the quarter-circular gate making an angle 23.2° upwards from the horizontal. 

The minimum spring force needed is determined by  taking a moment about the point A where the 
hinge is, and  setting it equal to zero, 

 0)90sin(           0 spring =−−→=∑ RFRFM RA θ  

Solving for Fspring and substituting, the spring force is determined to be   

       kN 177=°−°== )2.2390sin(kN) (192.2)-sin(90spring θRFF
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Chapter 3  Pressure and Fluid Statics 
3-76 A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B 
where the gate is pressed by a spring. The minimum spring force required to keep the gate closed when the 
water level rises to A at the upper edge of the gate is to be determined.  

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus 
it can be ignored in calculations for convenience. 3 The weight of the gate is negligible. 

Properties We take the density of water to be 1000 kg/m3 throughout.  

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate 
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane 
surfaces as well as the weight of the liquid block are determined as follows:  
Horizontal force on vertical surface:  

kN 9.313
m/skg 1000

kN 1m) 4  m m)(4 2/4)(m/s 81.9)(kg/m 1000(

)2/(

2
23

=












⋅
×=

==== ARgAghAPFF CavexH ρρ

 

Vertical force on horizontal surface (upward):   

B

A 

Fs

W 

Fy 

Fx
R = 4 m 

kN 8.627
m/skg 1000

kN 1m) 4 m m)(4 4)(m/s 81.9)(kg/m 1000(
2

23

bottom

=












⋅
×=

=== AghAghAPF Cavey ρρ

 

 The weight of fluid block per 4-m length (downwards): 

 kN1.493
m/s kg1000

 kN1/4]m) (4m) 4)[(m/s 81.9)( kg/m1000(

]4/[

2
223

2

=










⋅
=

×==

π

πρρ RwggW V

 

Therefore, the net upward vertical force is 

kN 7.1341.4938.627 =−=−= WFF yV  

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-
circular section of the gate become 

°=→===

=+=+=

23.2         429.0
kN 9.313
kN7.134tan

kN 6.341kN) 7.134(kN) 9.313( 2222

θθ
H

V

VHR

F
F

FFF  
 

Therefore, the magnitude of the hydrostatic force acting on the gate is 341.6 kN, and its line of action 
passes through the center of the quarter-circular gate making an angle 23.2° upwards from the horizontal.  

The minimum spring force needed is determined by  taking a moment about the point A where the 
hinge is, and  setting it equal to zero, 

 0)90sin(           0 spring =−−→=∑ RFRFM RA θ  

Solving for Fspring and substituting, the spring force is determined to be   

       kN  314.0=°−°== )2.2390sin( kN)(341.6)-sin(90spring θRFF
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Chapter 3  Pressure and Fluid Statics 
 
Buoyancy 
 
3-77C The upward force a fluid exerts on an immersed body is called the buoyant force. The buoyant force 
is caused by the increase of pressure in a fluid with depth. The magnitude of the buoyant force acting on a 
submerged body whose volume is V is expressed as VgF fB ρ= . The direction of the buoyant force is 
upwards, and its line of action passes through the centroid of the displaced volume.  
 
3-78C The magnitude of the buoyant force acting on a submerged body whose volume is V is expressed as 

VgF fB ρ= , which is independent of depth. Therefore, the buoyant forces acting on two identical 
spherical balls submerged in water at different depths will be the same.  
 
3-79C The magnitude of the buoyant force acting on a submerged body whose volume is V is expressed as 

VgF fB ρ= , which is independent of the density of the body ( is the fluid density). Therefore, the 
buoyant forces acting on the 5-cm diameter aluminum and iron balls submerged in water will be the same.  

fρ

 
3-80C The magnitude of the buoyant force acting on a submerged body whose volume is V is expressed as 

VgF fB ρ= , which is independent of the shape of the body. Therefore, the buoyant forces acting on the 
cube and sphere made of copper submerged in water will be the same since they have the same volume. 
 
3-81C A submerged body whose center of gravity G is above the center of buoyancy B, which is the 
centroid of the displaced volume, is unstable.  But a floating body may still be stable when G is above B 
since the centroid of the displaced volume shifts to the side to a point B’ during a rotational disturbance 
while the center of gravity G of the body remains unchanged. If the point B’ is sufficiently far, these two 
forces create a restoring moment, and return the body to the original position.   
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Chapter 3  Pressure and Fluid Statics 
3-82 The density of a liquid is to be determined by a hydrometer by establishing division marks in water 
and in the liquid, and measuring the distance between these marks.   

Properties We take the density of pure water to be 1000 kg/m3.  

Analysis A hydrometer floating in water is in static equilibrium, and the buoyant force FB exerted by the 
liquid must always be equal to the weight W of the hydrometer, FB = W.  

csub ghAgFB ρρ == V  

 3-54

where h is the height of the  submerged portion of the hydrometer 
and Ac is the cross-sectional area which is constant. 

In pure water:         W cww Aghρ=  

In the liquid:           W cAghliquidliquidρ=  

Setting the relations above equal to each other (since both equal the 
weight of the hydrometer) gives 

         ccww AghAgh liquidliquidρρ =  

Solving for the liquid density and substituting,  

        3kg/m 1053=
−

== ) kg/m(1000
cm )5.010(

cm 10 3
water

liquid

water
liquid ρρ

h
h

 

W 

FB 

mark for water 

10 cm 

0.5 cm

Liquid 

Discussion Note that for a given cylindrical hydrometer, the product of the fluid density and the height of 
the submerged portion of the hydrometer is constant in any fluid. 
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Chapter 3  Pressure and Fluid Statics 
3-83E A concrete block is lowered into the sea. The tension in the rope is to be determined before and after 
the block is immersed in water.  

Assumptions 1 The buoyancy force in air is negligible. 2 The weight of the rope is negligible.   

Properties  The density of steel block is given to be 494 lbm/ft3. 

Analysis (a) The forces acting on the concrete block in air are its downward weight and the upward pull 
action (tension) by the rope. These two forces must balance each other, and thus the tension in the rope 
must be equal to the weight of the block:  

         

lbf  6984=








⋅
=

==

===

2
323

concreteT

333

ft/slbm 32.2
lbf 1)ft 137.14)(ft/s 2.32)(lbm/ft 494(

ft 137.14/3ft) 5.1(43/4

V

V

gWF

R

ρ

ππ

 FT 

FB 

W 

(b) When the block is immersed in water, there is the additional force 
of buoyancy acting upwards. The force balance in this case gives   

         
lbf  6102=−=−=

=








⋅
==

8826984

lbf 882
ft/slbm 32.2

lbf 1)ft 137.14)(ft/s 2.32)(lbm/ft 4.62(

waterT,

2
323

B

fB

FWF

gF Vρ
 

Discussion Note that the weight of the concrete block and thus the 
tension of the rope decreases by (6984 – 6102)/6984 = 12.6% in water. 
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Chapter 3  Pressure and Fluid Statics 
3-84 An irregularly shaped body is weighed in air and then in water with a spring scale. The volume and 
the average density of the body are to be determined.   

Properties  We take the density of water to be 1000 kg/m3. 

Assumptions 1 The buoyancy force in air is negligible. 2 The body is completely submerged in water.   

Analysis The mass of the body is 
Water FB  Air 

kg9.733
N 1
m/s kg1

m/s 81.9
N 7200 2

2
air  =







 ⋅
==

g
W

m  
Mass, 
m, V

Wwir=6800 N 

The difference between the weights in air and in water is due to 
the buoyancy force in water,  

N 241047907200waterair =−=−= WWFB  Wwater =  4790 N 

Noting that VgFB waterρ= , the volume of the body is determined to be 

3m  0.2457===
)m/s 81.9)(kg/m (1000

N 2410
23

water g
FB

ρ
V  

Then the density of the body becomes 

3kg/m  2987=== 3m 0.2457
 kg9.733

V
mρ  

Discussion The volume of the body can also be measured by observing the change in the volume of the 
container when the body is dropped in it (assuming the body is not porous). 
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Chapter 3  Pressure and Fluid Statics 
3-85 The height of the portion of a cubic ice block that extends above the water surface is measured. The 
height of the ice block below the surface is to be determined.   

Assumptions 1 The buoyancy force in air is negligible. 2 The top surface of the ice block is parallel to the 
surface of the sea.   

Properties The specific gravities of ice and seawater are given to be 0.92 and 1.025, respectively, and thus 
the corresponding densities are 920 kg/m3 and 1025 kg/m3.   

Analysis The weight of a body floating in a fluid is equal to the buoyant force acting on it (a consequence 
of vertical force balance from static equilibrium). Therefore, in this case the average density of the body 
must be equal to the density of the fluid since 

                W = FB 

10 cm 

h 

FB  

Ice block 

W 

Sea 

submergedfluidtotalbody VV gg ρρ =  

    
fluid

body

total

submerged

ρ

ρ
=

V

V
 

The cross-sectional of a cube is constant, and thus the “volume 
ratio” can be replaced by “height ratio”. Then,  

  
025.1
92.0

10.0
         

10.0
        

water

ice

fluid

body

total

submerged =
+

→=
+

→=
h

h
h

h
h

h
ρ
ρ

ρ

ρ
 

where h is the height of the ice block below the surface.  Solving for h gives  

  h  = 0.876 m = 87.6 cm 

Discussion Note that the 0.92/1.025 = 90% of the volume of an ice block remains under water. For 
symmetrical ice blocks this also represents the fraction of height that remains under water.  
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Chapter 3  Pressure and Fluid Statics 
3-86 A man dives into a lake and tries to lift a large rock. The force that the man needs to apply to lift it 
from the bottom of the lake is to be determined.   

Assumptions 1 The rock is c completely submerged in water.  2 The buoyancy force in air is negligible. 

Properties The density of granite rock is given to be 2700 kg/m3. We take the density of water to be 1000 
kg/m3. 

Analysis The weight and volume of the rock are 

   
3

3

2
2

m 0.06296
 kg/m2700

 kg170

N 1668
m/s kg1
N 1)m/s  kg)(9.81170(

===

=








⋅
==

ρ
m

mgW

V

 

Fnet =W - FB 

Water FB  

W

The buoyancy force acting on the rock is 

             
N 618

m/s kg1
N 1)m 06296.0)(m/s 81.9)( kg/m1000( 2

323

water

=








⋅
=

= VgFB ρ

 

The weight of a body submerged in water is equal to the weigh of 
the body in air minus the buoyancy force,   

N  461=−=−= 6181079air in waterin BFWW  

Discussion This force corresponds to a mass of   

   kg0.47
m/s kg1
N 1

m/s 81.9
N 461

22
 waterin =









⋅
==

g
W

m  

Therefore, a person who can lift 47 kg on earth can lift this rock in water. 
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Chapter 3  Pressure and Fluid Statics 
3-87 An irregularly shaped crown is weighed in air and then in water with a spring scale. It is to be 
determined if the crown is made of pure gold. 

Assumptions 1 The buoyancy force in air is negligible. 2 The crown is completely submerged in water.   

Properties  We take the density of water to be 1000 kg/m3. The density of gold is given to be 19300 kg/m3. 

Analysis The mass of the crown is 

kg20.3
N 1
m/skg 1

m/s 81.9
N 4.31 2

2
air  =









 ⋅
==

g
W

m  Water FB  

Crown, 
m, V 

Air 

The difference between the weights in air and in water is due to 
the buoyancy force in water, and thus 

N 50.29.284.31waterair =−=−= WWFB  

Wwater = 2.95 kgf Wwir = 3.20 kgfNoting that VgFB waterρ= , the volume of the crown is determined to be 

34
23

water
m 10548.2

)m/s 81.9)(kg/m (1000
N 50.2 −×===

g
FB

ρ
V  

Then the density of the crown becomes 

3
34

kg/m 560,12
m 10548.2

kg 20.3  =
×

==
−V

mρ  

which is considerably less than the density of gold. Therefore, the crown is NOT made of pure gold. 

Discussion This problem can also be solved without doing any under-water weighing as follows: We 
would weigh a bucket half-filled with water, and drop the crown into it. After marking the new water level, 
we would take the crown out, and add water to the bucket until the water level rises to the mark. We would 
weigh the bucket again. Dividing the weight difference by the density of water and g will give the volume 
of the crown. Knowing both the weight and the volume of the crown, the density can easily be determined. 
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Chapter 3  Pressure and Fluid Statics 
3-88 The average density of a person is determined by weighing the person in air and then in water. A 
relation is to be obtained for the volume fraction of body fat in terms of densities. 

Assumptions 1 The buoyancy force in air is negligible. 2 The body is considered to consist of fat and 
muscle only. 3 The body is completely submerged in water, and the air volume in the lungs is negligible.   

Analysis The difference between the weights of the person in air 
and in water is due to the buoyancy force in water. Therefore, 

        waterairwaterwaterair WWgWWFB −=→−= Vρ  

Knowing the weights and the density of water, the relation above gives 
the volume of the person. Then the average density of the person can be 
determined from   

VV

gWm /air
ave ==ρ  

Under assumption #2, the total mass of a person is equal to the sum of the masses of the fat and muscle 
tissues, and the total volume of a person is equal to the sum of the volumes of the fat and muscle tissues. 
The volume fraction of body fat is the ratio of the fat volume to the total volume of the person. Therefore, 

  
)-(1 and                where

musclefat

fatmusclemusclefatfatmusclefat

mmm
xxx

+=
===+= VVVVVVVV

 

Noting that mass is density times volume, the last relation can be written as Air 

Water 

Wwater  

FB  

VVV

VVV

)1( fatmusclefatfatave

musclemusclefatfatave

xx −+=
+=

ρρρ
ρρρ

 

Person, 
m,V 

Canceling the V and solving for xfat gives the desired relation, 

fatmuscle

avemuscle
fat ρρ

ρρ
−
−

=x  

Discussion Weighing a person in water in order to determine its 
volume is not practical. A more practical way is to use a large 
container, and measuring the change in volume when the person is 
completely submerged in it. 

Wwir  
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Chapter 3  Pressure and Fluid Statics 
3-89 The volume of the hull of a boat is given. The amounts of load the boat can carry in a lake and in the 
sea are to be determined.  

Assumptions 1 The dynamic effects of the waves are disregarded.  2 The buoyancy force in air is 
negligible. 

Properties The density of sea water is given to be 1.03×1000 = 1030 kg/m3. We take the density of water to 
be 1000 kg/m3. 

Analysis The weight of the unloaded boat is 

   kN 84.0
m/skg 1000

kN 1)m/s kg)(9.81 8560(
2

2
boat =











⋅
== mgW  

The buoyancy force becomes a maximum when the entire hull of the 
boat is submerged in water, and is determined to be 

 kN1472
m/s kg1000

 kN1)m 150)(m/s 81.9)( kg/m1000( 2
323

lakelake, =








⋅
== VgFB ρ  

Wboat 

FB 
Wload 

 kN1516
m/s kg1000

 kN1)m 150)(m/s 81.9)( kg/m1030( 2
323

seasea, =








⋅
== VgFB ρ

The total weight of a floating boat (load + boat itself) is equal to   
the buoyancy force. Therefore,  the weight of the maximum load is 

kN 1432841516
kN 1388841472lake,

boatsea,sea load,

boatlake load,

=−=−=

=−=−=

WFW
WFW

B

B  

The corresponding masses of load are 

    kg 141,500
kN 1

m/skg 1000
m/s 9.81

kN 1388 2

2
lakeload,

lakeload, =








 ⋅
==

g
W

m  

  kg 146.0
kN 1

m/skg 1000
m/s 9.81

kN 1432 2

2
lseaload,

seaload, =








 ⋅
==

g
W

m  

Discussion Note that this boat can carry 4500 kg more load in the sea than it can in fresh water. The fully-
loaded boats in sea water should expect to sink into water deeper when they enter fresh water such a river 
where the port may be.   
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Chapter 3  Pressure and Fluid Statics 
 
Fluids in Rigid Body Motion 
 
3-90C A moving body of fluid can be treated as a rigid body when there are no shear stresses (i.e., no 
motion between fluid layers relative to each other) in the fluid body. 
 
3-91C A glass of water is considered. The water pressure at the bottom surface will be the same since the 
acceleration for all four cases is zero.   
 
3-92C The pressure at the bottom surface is constant when the glass is stationary. For a glass moving on a 
horizontal plane with constant acceleration, water will collect at the back but the water depth will remain 
constant at the center. Therefore, the pressure at the midpoint will be the same for both glasses. But the 
bottom pressure will be low at the front relative to the stationary glass, and high at the back (again relative 
to the stationary glass). Note that the pressure in all cases is the hydrostatic pressure, which is directly 
proportional to the fluid height.    
 
3-93C When a vertical cylindrical container partially filled with water is rotated about its axis and rigid 
body motion is established, the fluid level will drop at the center and rise towards the edges. Noting that 
hydrostatic pressure is proportional to fluid depth, the pressure at the mid point will drop and the pressure 
at the edges of the bottom surface will rise due to rotation.   
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Chapter 3  Pressure and Fluid Statics 
3-94 A water tank is being towed by a truck on a level road, and the angle the free surface makes with the 
horizontal is measured. The acceleration of the truck is to be determined.  
 
 ax
 

Water 
tank 

θ = 15°
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The road is horizontal so that acceleration has no vertical component (az = 0). 2 Effects of 
splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, and are not 
considered.  3 The acceleration remains constant. 

Analysis  We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction. 
The tangent of the angle the free surface makes with the horizontal is 

z

x

ag
a
+

=θtan   

Solving for ax and substituting,  

            a    2m/s  2.63=°+=+= 15tan)0m/s 81.9(tan)( 2θzx ag

Discussion Note that the analysis is valid for any fluid with constant density since we used no information 
that pertains to fluid properties in the solution.   
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Chapter 3  Pressure and Fluid Statics 
3-95 Two water tanks filled with water, one stationary and the other moving upwards at constant 
acceleration. The tank with the higher pressure at the bottom is to be determined.  
 
 

1•

•
2

1• 0

z

g Water2 m

Tank B 

az = 5 m/s2 

Water 

8 m 

Tank A 

•
2 

 
 
 
 
 
 
 
 
 
 

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis  The pressure difference between two points 1 and 2 in an incompressible fluid is given by 

       ))(()( 121212 zzagxxaPP zx −+−−−=− ρρ      or        ))(( 1221 zzagPP z −+=− ρ  

since ax = 0. Taking point 2 at the free surface and point 1 at the tank bottom, we have  and 
 and thus  

atmPP =2

hzz =− 12

hagPP z )(bottomgage ,1 +== ρ  

Tank A: We have az = 0, and thus the pressure at the bottom is 

2
2

23
  bottom,  kN/m5.78

m/s kg1000
 kN1m) 8)(m/s 81.9)( kg/m1000( =









⋅
== AA ghP ρ  

Tank B: We have  az = +5 m/s2, and thus the pressure at the bottom is 

2
2

23
  bottom,  kN/m6.29

m/s kg1000
 kN1m) 2)(m/s 581.9)( kg/m1000()( =









⋅
+=+= BzB hagP ρ  

Therefore, tank A has a higher pressure at the bottom.  
 
Discussion We can also solve this problem quickly by examining the relation hagP z )(bottom += ρ . 
Acceleration for tank B is about 1.5 times that of Tank A (14.81 vs 9.81 m/s2), but the fluid depth for tank 
A is 4 times that of tank B (8 m vs 2 m). Therefore, the tank with the larger acceleration-fluid height 
product (tank A in this case) will have a higher pressure at the bottom.   
 
 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution 
permitted only to teachers and educators for course preparation.  If you are a student using this Manual, you 
are using it without permission.   

3-64



Chapter 3  Pressure and Fluid Statics 
3-96 A water tank is being towed on an uphill road at constant acceleration. The angle the free surface of 
water makes with the horizontal is to be determined, and the solution is to be repeated for the downhill 
motion case.   
 

z

x

2m/s 5=a
r

g
r

Downhill 
motion 

-θ  

α = 20° 

ax

az 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

z

x

2m/s 5=a
r

g
rUphill 

motion 

Horizontal θ  

α = 20° 

Water 
tank 

az 

Free 
surface 

ax

Assumptions 1 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be 
secondary, and are not considered.  2 The acceleration remains constant.  

Analysis  We take the x- and z-axes as shown in the figure. From geometrical considerations, the  
horizontal and vertical components of acceleration are  

α
α

sin
cos

aa
aa

z

x

=
=

 

The tangent of the angle the free surface makes with the horizontal is 

4078.0
20sin)m/s 5(m/s 81.9

20cos)m/s 5(
sin

costan 22

2
=

°+
°

=
+

=
+

=
α

αθ
ag

a
ag

a

z

x      →    θ = 22.2° 

When the direction of motion is reversed, both ax and az are in negative x- and z-direction, respectively, and 
thus become negative quantities,    

α
α

sin
cos

aa
aa

z

x

−=
−=

 

Then the tangent of the angle the free surface makes with the horizontal becomes 

5801.0
20sin)m/s 5(m/s 81.9

20cos)m/s 5(
sin

costan 22

2
−=

°−
°−

=
+

=
+

=
α

αθ
ag

a
ag

a

z

x      →    θ = - 30.1° 

Discussion Note that the analysis is valid for any fluid with constant density, not just water, since we used 
no information that pertains to water in the solution.   
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Chapter 3  Pressure and Fluid Statics 
3-97E A vertical cylindrical tank open to the atmosphere is rotated about the centerline. The angular 
velocity at which the bottom of the tank will first be exposed, and the maximum water height at this 
moment are to be determined.     

 

0 r

z
2 ft

ω 
 
 
 
 
 
 
 
 
 
Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always 
acts as a rigid body.  2 Water is an incompressible fluid.  

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (r = 0, z = 0), 
the equation for the free surface of the liquid is given as   

           )2(
4

)( 22
2

0 rR
g

hrzs −−=
ω      

where h0 = 1 ft is the original height of the liquid before rotation. Just before dry spot appear at the center 
of bottom surface, the height of the liquid at the center equals zero, and thus zs(0) = 0. Solving the equation 
above for ω and substituting,   

           rad/s 11.35===
2

2

2
0

ft) 1(
ft) 1)(ft/s 2.32(44

R
gh

ω      

Noting that one complete revolution corresponds to 2π radians, the rotational speed of the container can 
also be expressed in terms of revolutions per minute (rpm) as 

           rpm  108=





==

min 1
s 60

 rad/rev2
 rad/s35.11

2 ππ
ωn&      

Therefore, the rotational speed of this container should be limited to 108 rpm to avoid any dry spots at the 
bottom surface of the tank.   

The maximum vertical height of the liquid occurs a the edges of the tank (r = R = 1 ft), and it is 

           ft 2.00=+=+=
)ft/s 2.32(4
ft) 1( rad/s)35.11()ft 1(

4
)( 2

2222

0 g
RhRzs

ω      

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any 
other fluid property.   
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Chapter 3  Pressure and Fluid Statics 
3-98 A cylindrical tank is being transported on a level road at constant acceleration. The allowable water 
height to avoid spill of water during acceleration is to be determined  
 

ax = 4 m/s2 
 

Water 
tank 

∆z

htank =60 cm 

θ

D=40 cm

 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The road is horizontal during acceleration so that acceleration has no vertical component (az 
= 0). 2 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, 
and are not considered.  3 The acceleration remains constant. 

Analysis  We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction, 
and the origin to be the midpoint of the tank bottom. The tangent of the angle the free surface makes with 
the horizontal is 

4077.0
081.9

4tan =
+

=
+

=
z

x

ag
a

θ   (and thus θ = 22.2°) 

The maximum vertical rise of the free surface occurs at the back of the tank, and the vertical midplane 
experiences no rise or drop during acceleration. Then the maximum vertical rise at the back of the tank 
relative to the midplane is   

cm 8.2m 082.00.4077m)/2] 40.0[(tan)2/(max ==×==∆ θDz  

Therefore, the maximum initial water height in the tank to avoid spilling is 

cm 51.8=−=∆−= 2.860maxtankmax zhh  

 Discussion Note that the analysis is valid for any fluid with constant density, not just water, since we used 
no information that pertains to water in the solution.   
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Chapter 3  Pressure and Fluid Statics 
3-99 A vertical cylindrical container partially filled with a liquid is rotated at constant speed. The drop in 
the liquid level at the center of the cylinder is to be determined.     

 

g 

ho = 60 cm

Free 
surface 

R = 20 cm

zs

ω

r

z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always 
acts as a rigid body.  2 The bottom surface of the container remains covered with liquid during rotation (no 
dry spots).  

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (r = 0, z = 0), 
the equation for the free surface of the liquid is given as   

           )2(
4

)( 22
2

0 rR
g

hrzs −−=
ω      

where h0 = 0.6 m is the original height of the liquid before rotation, and  

 rad/s57.12
s 60

min 1 rev/min)120(22 =





== ππω n&  

Then the vertical height of the liquid at the center of the container where r = 0 becomes 

           m 44.0
)m/s 81.9(4

m) 20.0( rad/s)57.12()m 06.0(
4

)0( 2

2222

0 =−=−=
g
Rhzs

ω      

Therefore, the drop in the liquid level at the center of the cylinder is  

                m  0.16=−=−=∆ 44.060.0)0(0center drop, szhh

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any 
other fluid property. Also, our assumption of no dry spots is validated since z0(0) is positive. 
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Chapter 3  Pressure and Fluid Statics 
3-100 The motion of a fish tank in the cabin of an elevator is considered. The pressure at the bottom of the 
tank when the elevator is stationary, moving up with a specified acceleration, and moving down with a 
specified acceleration is to be determined.  
 
 

0

z

 
 
 
 
 
 
 
 
 
 
 

Assumptions 1 The acceleration remains constant. 

Properties We take the density of water to be 1000

Analysis  The pressure difference between two poi

       ))(()( 121212 zzagxxaPP zx −+−−−=− ρρ

since ax = 0. Taking point 2 at the free surface a
 and thus  hzz =− 12

hagPP z )(bottomgage ,1 +== ρ  

(a) Tank stationary: We have az = 0, and thus the 





== 23

 bottom 1
m) 4.0)(m/s 81.9)( kg/m1000(ghP ρ

(b) Tank moving up: We have az = +3 m/s2, and th

+=+= 3
 bottom m/ 381.9)( kg/m1000()( Bz hagP ρ

(c) Tank moving down: We have az = -3 m/s2, and

−=+= 3
 bottom m/ 381.9)( kg/m1000()( Bz hagP ρ

 
Discussion Note that the pressure at the tank bott
while moving  down, and thus the tank is under mu
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is an incompressible substance. 

 2 in an incompressible fluid is given by 

  ))(( 1221 zzagPP z −+=− ρ  

 1 at the tank bottom, we have  and atmPP =2

ssure at the tank bottom is 

kPa 3.92==


 2
2  kN/m92.3

m/s
 

age pressure at the tank bottom is 

kPa 5.12==








⋅
2

2  kN/m12.5
m/s kg1000

 kN1)  

 gage pressure at the tank bottom is 

kPa 2.72==








⋅
2
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Chapter 3  Pressure and Fluid Statics 
3-101 vertical cylindrical milk tank is rotated at constant speed, and the pressure at the center of the bottom 
surface is measured. The pressure at the edge of the bottom surface is to be determined.     
 

ho 

0

g

Free 
surface 

R = 1.50 m

zs

ω

r

z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always 
acts as a rigid body.  2 Milk is an incompressible substance.  

Properties The density of the milk is given to be 1030 kg/m3. 

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (r = 0, z = 0), 
the equation for the free surface of the liquid is given as   

           )2(
4

)( 22
2

0 rR
g

hrzs −−=
ω      

where R = 1.5 m is the radius, and  

rad/s 2566.1
s 60

min 1rev/min) 12(22 =





== ππω n&  

The fluid rise at the edge relative to the center of the tank is   

        m 1811.1
)m/s 81.9(2

m) 50.1(rad/s) 2566.1(
244

)0()(
2

222222

0

22

0 ===









−−










+=−=

g
R

g
Rh

g
RhzRzh ss

ωωω
∆      

The pressure difference corresponding to this fluid height difference is   

kPa  83.1kN/m 83.1
m/skg 1000

kN 1m) 1811.1)(m/s 81.9)(kg/m 1030( 2
2

23
bottom ==











⋅
=∆=∆ hgP ρ  

    Then the pressure at the edge of the bottom surface becomes   

kPa  131.8≅=+=∆+= kPa  83.13183.1130bottom center bottom, edge bottom, PPP  

    Discussion Note that the pressure is 1.4% higher at the edge relative to the center of the tank, and there is a 
fluid level difference of 1.18 m between the edge and center of the tank, and these differences should be 
considered when designing rotating fluid tanks.  
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Chapter 3  Pressure and Fluid Statics 
3-102 Milk is transported in a completely filled horizontal cylindrical tank accelerating at a specified rate. 
The maximum pressure difference in the tanker is to be determined.  √EES   

ax = - 3 m/s2 
 

•
2

0 
x

z•
1 

 

g 

 
 
 
 
 
 
Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance. 

Properties The density of the milk is given to be 1020 kg/m3. 

Analysis  We take the x- and z- axes as shown. The horizontal acceleration is in the negative x direction, 
and thus ax is negative. Also, there is no acceleration in the vertical direction, and thus az = 0. The pressure 
difference between two points 1 and 2 in an incompressible fluid in linear rigid body motion is given by 

        ))(()( 121212 zzagxxaPP zx −+−−−=− ρρ     →      )()( 121212 zzgxxaPP x −−−−=− ρρ  

The first term is due to acceleration in the horizontal direction and the resulting compression effect towards 
the back of the tanker, while the second term is simply the hydrostatic pressure that increases with depth. 
Therefore, we reason that the lowest pressure in the tank will occur at point 1 (upper front corner), and the 
higher pressure at point 2 (the lower rear corner). Therefore, the maximum pressure difference in the  tank 
is   

              [ ]
kPa  47.9=+=










⋅
−+−−=

−+−−=−−−−=−=∆

2

2
223

1212121212max

 kN/m)0.309.17(             

m/s kg1000
 kN1m) 3)(m/s 81.9(m) 7)(m/s 5.2() kg/m1020(   

)]()([)()( zzgxxazzgxxaPPP xx

          

ρρ

 

since x1 = 0,  x2 = 7 m,  z1 = 3 m, and z2 = 0.      

Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal 
direction while the variation of pressure in the vertical direction is due to the effects of gravity and 
acceleration in the vertical direction (which is zero in this case).  
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Chapter 3  Pressure and Fluid Statics 
3-103 Milk is transported in a completely filled horizontal cylindrical tank decelerating at a specified rate. 
The maximum pressure difference in the tanker is to be determined.  √EES   
 ax = 3 m/s2

 

g 

•
1

•
2 x

z

 
 
 
 
 
 
 
 
Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance. 

Properties The density of the milk is given to be 1020 kg/m3. 

Analysis  We take the x- and z- axes as shown. The horizontal deceleration is in the x direction, and thus ax 
is positive. Also, there is no acceleration in the vertical direction, and thus az = 0. The pressure difference 
between two points 1 and 2 in an incompressible fluid in linear rigid body motion is given by 

        ))(()( 121212 zzagxxaPP zx −+−−−=− ρρ     →      )()( 121212 zzgxxaPP x −−−−=− ρρ  

The first term is due to deceleration in the horizontal direction and the resulting compression effect towards 
the front of the tanker, while the second term is simply the hydrostatic pressure that increases with depth. 
Therefore, we reason that the lowest pressure in the tank will occur at point 1 (upper front corner), and the 
higher pressure at point 2 (the lower rear corner). Therefore, the maximum pressure difference in the tank is   

              [ ]
kPa  47.9=+=










⋅
−+−−=

−+−−=−−−−=−=∆

2

2
223

1212121212max

 kN/m)0.309.17(             

m/s kg1000
 kN1m) 3)(m/s 81.9(m) 7)(m/s 5.2() kg/m1020(   

)]()([)()( zzgxxazzgxxaPPP xx

          

ρρ

 

since x1 = 7 m,  x2 = 0,  z1 = 3 m, and z2 = 0.      

Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal 
direction while the variation of pressure in the vertical direction is due to the effects of gravity and 
acceleration in the vertical direction (which is zero in this case).  
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Chapter 3  Pressure and Fluid Statics 
3-104 A vertical U-tube partially filled with alcohol is rotated at a specified rate about one of its arms. The 
elevation difference between the fluid levels in the two arms is to be determined.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 Alcohol is an incompressible fluid.  

h0 = 20 cm

R = 25 cm

z

r0 

Analysis Taking the base of the left arm of the U-tube as the origin (r = 0, z = 0), the equation for the free 
surface of the liquid is given as   

           )2(
4

)( 22
2

0 rR
g

hrzs −−=
ω      

where h0 = 0.20 m is the original height of the liquid before rotation, and ω = 4.2 rad/s. The fluid rise at the 
right arm relative to the fluid level in the left arm (the center of rotation) is   

        m 0.056===







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
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
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g
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ωωω
∆      

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any 
other fluid property.   
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Chapter 3  Pressure and Fluid Statics 
3-105 A vertical cylindrical tank is completely filled with gasoline, and the tank is rotated about its vertical 
axis at a specified rate. The pressures difference between the centers of the bottom and top surfaces, and the 
pressures difference between the center and the edge of the bottom surface are to be determined.  √EES   
 

0 r

z

D = 1.20 m h = 3 m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always 
acts as a rigid body.  2 Gasoline is an incompressible substance.  

Properties The density of the gasoline is given to be 740 kg/m3. 

Analysis  The pressure difference between two points 1 and 2 in an incompressible fluid rotating in rigid 
body motion is given by 

        )()(
2 12

2
1

2
2

2

12 zzgrrPP −−−=− ρρω        

where R = 0.60 m is the radius, and  

 rad/s330.7
s 60

min 1 rev/min)70(22 =





== ππω n&  

(a) Taking points 1 and 2 to be the centers of the bottom and top surfaces, respectively, we have 
 and . Then,   021 == rr m 312 ==− hzz

kPa  21.8==

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
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(b) Taking points 1 and 2 to be the center and edge of the bottom surface, respectively, we have 01 =r , 
, and . Then,   Rr =2 012 == zz

2
0)0(

2

22
2
2

2
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RRPP ρωρω
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m) 60.0( rad/s)33.7)( kg/m740(

                                  

Discussion Note that the rotation of the tank does not affect the pressure difference along the axis of the 
tank. But the pressure difference between the edge and the center of the bottom surface (or any other 
horizontal plane) is due entirely to the rotation of the tank.  
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Chapter 3  Pressure and Fluid Statics 
3-106 Problem 3-105 is reconsidered. The effect of rotational speed on the pressure difference between the 
center and the edge of the bottom surface of the cylinder as the rotational speed varies from 0 to 500 rpm in 
increments of 50 rpm is to be investigated.  
 
g=9.81 "m/s2" 
rho=740 "kg/m3" 
R=0.6 "m" 
h=3 "m" 
 
omega=2*pi*n_dot/60 "rad/s" 
DeltaP_axis=rho*g*h/1000 "kPa" 
DeltaP_bottom=rho*omega^2*R^2/2000 "kPa" 
 

 

Rotation rate 
n& , rpm 

Angular speed 
ω, rad/s 

∆Pcenter-edge 
kPa 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

0.0 
5.2 

10.5 
15.7 
20.9 
26.2 
31.4 
36.7 
41.9 
47.1 
52.4 

0.0 
3.7 

14.6 
32.9 
58.4 
91.3 
131.5 
178.9 
233.7 
295.8 
365.2 
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Chapter 3  Pressure and Fluid Statics 
3-107E A water tank partially filled with water is being towed by a truck on a level road. The maximum 
acceleration (or deceleration) of the truck to avoid spilling is to be determined.  
 
 
 
 

t 
 
 
 
 z
 

x
 
 0 
 
 
 
Assumptions 1 The road is horizontal so that accele
splashing, breaking, driving over bumps, and clim
considered.  3 The acceleration remains constant. 

Analysis  We take the x-axis to be the direction of 
The shape of the free surface just before spilling i
surface makes with the horizontal is given by 

z

x

ag
a
+

=θtan                 →         tangax =

where az = 0 and, from geometric considerations, tan

2/
tan

L
h∆

=θ   

 Substituting,  

            =
∆

==
ft)/2 (20
ft 2)ft/s 2.32(

2/
tan 2

L
hggx θa

The solution can be repeated for deceleration by repl

Discussion Note that the analysis is valid for any flu
that pertains to fluid properties in the solution.   
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Chapter 3  Pressure and Fluid Statics 
3-108E A water tank partially filled with water is being towed by a truck on a level road. The maximum 
acceleration (or deceleration) of the truck to avoid spilling is to be determined.  
 
 
 
 
 
 
 
 
 z
 

x
 
 0 
 
 
 
Assumptions 1 The road is horizontal so that decele
splashing and driving over bumps are assumed to be 
remains constant. 

Analysis  We take the x-axis to be the direction of 
The shape of the free surface just before spilling i
surface makes with the horizontal is given by 
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where az = 0 and, from geometric considerations, tan
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L
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=θ   

 Substituting,  
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Discussion Note that the analysis is valid for any flu
that pertains to fluid properties in the solution.   
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Chapter 3  Pressure and Fluid Statics 
3-109 Water is transported in a completely filled horizontal cylindrical tanker accelerating at a specified 
rate. The pressure difference between the front and back ends of the tank along a horizontal line when the 
truck accelerates and decelerates at  specified rates.  √EES   

ax = - 3 m/s2 
 

•
2z

 
 

g
 
 
 
 
 
 
Assumptions 1 The acceleration

Properties We take the density o

Analysis  (a) We take the x- and
and thus ax is negative. Also, th
difference between two points 1

        )( 1212 xxaPP x −−−=− ρ

since z2 -  z1 = 0 along a horizo
the tank is due to acceleration i
back of the tank. Then the press

−−=−=∆ 1212 )( xxaPPP xρ

since x1 = 0 and  x2 = 7 m.      

(b) The pressure difference duri

−−=−=∆ 1212  )( xxaPPP xρ

Discussion Note that the pressu
end during deceleration (during 
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 remains constant. 2 Water is an incompressible substance. 

f the water to be 1000 kg/m3. 

 z- axes as shown. The horizontal acceleration is in the negative x direction, 
ere is no acceleration in the vertical direction, and thus az = 0. The pressure 
 and 2 in an incompressible fluid in linear rigid body motion is given by 

))(( 12 zzag z −+ρ     →      )( 1212 xxaPP x −−=− ρ  

ntal line. Therefore, the pressure difference between the front and back of 
n the horizontal direction and the resulting compression effect towards the 
ure difference along a horizontal line becomes   
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ng deceleration is determined the way, but ax = 4 m/s2 in this case, 
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re is higher at the back end of the tank during acceleration, but at the front 
breaking, for example) as expected.  
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