
Chapter 5  Mass, Bernoulli, and Energy Equations 

 
PROPRIETARY MATERIAL

Chapter 5 
MASS, BERNOULLI, AND ENERGY EQUATIONS 

 
 
Conservation of Mass 
 
5-1C Mass, energy, momentum, and electric charge are conserved, and volume and entropy are not 
conserved during a process.  
 
5-2C Mass flow rate is the amount of mass flowing through a cross-section per unit time whereas the 
volume flow rate is the amount of volume flowing through a cross-section per unit time. 
 
5-3C The amount of mass or energy entering a control volume does not have to be equal to the amount of 
mass or energy leaving during an unsteady-flow process. 
 
5-4C Flow through a control volume is steady when it involves no changes with time at any specified 
position. 
 
5-5C No, a flow with the same volume flow rate at the inlet and the exit is not necessarily steady (unless 
the density is constant). To be steady, the mass flow rate through the device must remain constant.  
 
 

5-6E A garden hose is used to fill a water bucket. The volume and mass flow rates of water, the filling 
time, and the discharge velocity are to be determined. 

Assumptions 1 Water is an incompressible substance. 2 Flow through the hose is steady. 3 There is no 
waste of water by splashing. 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis (a) The volume and mass flow rates of water are 

/sft  0.04363 3==== ft/s)  8](4/ft) 12/1([)4/( 22 ππ VDAVV&  

lbm/s  2.72 === /s)ft  04363.0)(lbm/ft  4.62(m 33V&& ρ  

(b) The time it takes to fill a 20-gallon bucket is 

s 61.3=

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(c) The average discharge velocity of water at the nozzle exit is 

ft/s 32====
]4/ft) 12/5.0([

/sft 04363.0
4/ 2

3

2 ππ ee
e

DA
V VV &&

 

Discussion Note that for a given flow rate, the average velocity is inversely proportional to the square of 
the velocity. Therefore, when the diameter is reduced by half, the velocity quadruples.   
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5-7 Air is accelerated in a nozzle. The mass flow rate and the exit area of the nozzle are to be determined. 

Assumptions Flow through the nozzle is steady. 

Properties The density of air is given to be 2.21 kg/m3 at the inlet, and 0.762 kg/m3 at the exit.    

Analysis (a) The mass flow rate of air is determined from the inlet conditions to be 
 

5-2

&

kg/s 0.530=== )m/s 30)(m 0.008)(kg/m  21.2( 23
111 VAm ρ&  

 
(b) There is only one inlet and one exit, and thus & &m m m1 2= = .  
Then the exit area of the nozzle is determined to be 

     

   2cm 38.7====→= 2
3

22
2222 m 00387.0

m/s) )(180mkg/ (0.762
kg/s 0.530

V
mAVAm

ρ
ρ

&
&  

V1 = 30 m/s 
A1 = 80 cm2 V2 = 180 m/s 

AIR 

  
 

 

 

 

 

5-8 Air is expanded and is accelerated as it is heated by a hair dryer of constant diameter. The percent 
increase in the velocity of air as it flows through the drier is to be determined. 

Assumptions Flow through the nozzle is steady. 

Properties The density of air is given to be 1.20 kg/m3 at the inlet, and 1.05 kg/m3 at the exit.    

Analysis  There is only one inlet and one exit, and thus & &m m m1 2 &= = . Then,  

  

) of increase and (or,     1.14
kg/m 1.05
kg/m 1.20

3
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Therefore, the air velocity increases 14% as it flows through the hair drier.  

V1  V2  
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5-9E The ducts of an air-conditioning system pass through an open area. The inlet velocity and the mass 
flow rate of air are to be determined. 

Assumptions Flow through the air conditioning duct is steady. 

Properties The density of air is given to be 0.078 lbm/ft3 at the inlet.    

Analysis  The inlet velocity of air and the mass flow rate through the duct are 
 

450 ft3/min AIR D = 10 in
 

( )
ft/s 13.8ft/min 825 =====

4/ft 10/12
/minft 450

4/ 2

3

2
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1
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VV &&
 

  
lbm/s  0.585==== lbm/min 35.1min)/ft 450)(lbm/ft 078.0( 33

11V&& ρm  
 

  
 

 

 

 

 

5-10 A rigid tank initially contains air at atmospheric conditions. The tank is connected to a supply line, 
and air is allowed to enter the tank until the density rises to a specified level. The mass of air that entered 
the tank is to be determined. 

Properties The density of air is given to be 1.18 kg/m3 at the beginning, and 7.20 kg/m3 at the end.    

Analysis We take the tank as the system, which is a control volume since mass crosses the boundary.  The 
mass balance for this system can be expressed as 

 
Mass balance:        VV 1212system         ρρ −=−=→∆=− mmmmm ioutinm  

 
Substituting, 
 

V1 = 1 m3 
ρ1 =1.18 kg/m3

 
          kg  6.02==−= )m 1](kg/m 1.18)-(7.20[)( 33

12 Vρρim
 
Therefore, 6.02 kg of mass entered the tank.    
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5-11 The ventilating fan of the bathroom of a building runs continuously. The mass of air “vented out” per 
day is to be determined. 

Assumptions Flow through the fan is steady. 

Properties The density of air in the building is given to be 1.20 kg/m3.  

5-4

Analysis The mass flow rate of air vented out is 

   kg/s036.0)/sm 030.0)( kg/m20.1( 33
airair === V&& ρm

Then the mass of air vented out in 24 h becomes   

 kg  3110=×=∆= s) 3600kg/s)(24 036.0(air tmm &  

Discussion Note that more than 3 tons of air is vented out by a bathroom fan in one day.   
 

 

 

 

 

 

5-12 A desktop computer is to be cooled by a fan at a high elevation where the air density is low. The mass 
flow rate of air through the fan and the diameter of the casing for a given velocity are to be determined. 

Assumptions Flow through the fan is steady. 

Properties The density of air at a high elevation is given to be 0.7 kg/m3.  

Analysis The mass flow rate of air is 

  kg/s  0.0040 ==== kg/min  238.0)/minm 34.0)(kg/m 7.0( 33
airair V&& ρm

If the mean velocity is 110 m/min, the diameter of the casing is 

m  0.063===→==
m/min) (110

/min)m 34.0(44           
4

32

ππ
π

V
DVDAV V

V
&

&  

Therefore, the diameter of the casing must be at least 6.3 cm to ensure that the mean 
velocity does not exceed 110 m/min.    
 
Discussion This problem shows that engineering systems are sized to satisfy certain constraints imposed by 
certain considerations. 
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5-13 A smoking lounge that can accommodate 15 smokers is considered. The required minimum flow rate 
of air that needs to be supplied to the lounge and the diameter of the duct are to be determined. 

Assumptions  Infiltration of air into the smoking lounge is negligible. 

Properties The minimum fresh air requirements for a smoking lounge is given to be 30 L/s per person.  

Analysis The required minimum flow rate of air that needs  
to be supplied to the lounge is determined directly from 

Smoking Lounge 
 

15 smokers 
30 L/s person 

     
/sm  0.45 3=L/s 450=persons) person)(15L/s (30=

persons) of No.(personper air air

⋅

=VV &&

The volume flow rate of fresh air can be expressed as 
  

)4/( 2DVVA π==V&  
 
Solving for the diameter D and substituting,   

m  0.268===
m/s) (8

)/sm 45.0(44 3

ππV
D V&  

Therefore, the diameter of the fresh air duct should be at least 26.8 cm 
if the velocity of air is not to exceed 8 m/s. 

 

 

 
5-14 The minimum fresh air requirements of a residential building is specified to be 0.35 air changes per 
hour. The size of the fan that needs to be installed and the diameter of the duct are to be determined.  √ 

Analysis   The volume of the building and the required minimum volume flow rate of fresh air are 

  
L/min  3150====×=

==

L/h 189,000h/m 189)/h35.0)(m 540(ACH

m 540)m m)(200 7.2(
33

room

32
room

VV

V
&

The volume flow rate of fresh air can be expressed as 

5-5

)4/( 2DVVA π==V&  

Solving for the diameter D and substituting,   

m  0.106===
m/s) (6

)/sm 3600/189(44 3

ππV
D V&  

Therefore, the diameter of the fresh air duct should be at least 10.6 cm 
if the velocity of air is not to exceed 6 m/s. 

0.35 ACH

House 
 

200 m2 
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Mechanical Energy and Pump Efficiency 
 
5-15C The mechanical energy is the form of energy that can be converted to mechanical work completely 
and directly by a mechanical device such as a propeller. It differs from thermal energy in that thermal 
energy cannot be converted to work directly and completely. The forms of mechanical energy of a fluid 
stream are kinetic, potential, and flow energies. 
 
5-16C Mechanical efficiency is defined as the ratio of the mechanical energy output to the mechanical 
energy input. A mechanical efficiency of 100% for a hydraulic turbine means that the entire mechanical 
energy of the fluid is converted to mechanical (shaft) work.  
 
5-17C The combined pump-motor efficiency of a pump/motor system is defined as the ratio of the increase 
in the mechanical energy of the fluid to the electrical power consumption of the motor, 

inelect,

pump

inelect,

fluidmech,

inelect,

inmech,outmech,
motorpumpmotor-pump W

W
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W
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&

&
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&

&

&&
=

∆
=

−
== ηηη  

The combined pump-motor efficiency cannot be greater than either of the pump or motor efficiency since 
both pump and motor efficiencies are less than 1, and the product of two numbers that are less than one is 
less than either of the numbers. 
 
5-18C The turbine efficiency, generator efficiency, and combined turbine-generator efficiency are defined 
as follows: 

||fluid  thefromextracted  energy Mechanical
output energy  Mechanical

fluidmech,

outshaft,
turbine E

W
&

&

∆
==η  
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W
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&
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&
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&

∆
=

−
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5-19 A river is flowing at a specified velocity, flow rate, and elevation. The total mechanical energy of the 
river water per unit mass, and the power generation potential of the entire river are to be determined. √ 

Assumptions 1 The elevation given is the elevation of the free surface of the river. 2 The velocity given is 
the average velocity. 3 The mechanical energy of water at the turbine exit is negligible.   

Properties  We take the density of water to be ρ = 1000 kg/m3. 

Analysis Noting that the sum of the flow energy and the potential energy is constant for a given fluid body, 
we can take the elevation of the entire river water to be the elevation of the free surface, and ignore the 
flow energy. Then the total mechanical energy of the river water per unit mass becomes    

     

 kJ/kg887.0
/sm 1000

 kJ/kg1
2

)m/s 3(m) 90)(m/s (9.81

2

22

2
2

2

mech

=
















+=

+=+=
Vghkepee

 

The power generation potential of the river water is obtained by 
multiplying the total mechanical energy by the mass flow rate,  

90 m

River 3 m/s

 kg/s500,000/s)m 00)(5 kg/m1000( 33 === V&& ρm  

       W  MW  444=====  kW000,444 kg/s)87 kg/s)(0.8000,500(mechmechmax emE &&&

Therefore, 444 MW of power can be generated from this river as it discharges into the lake if its power 
potential can be recovered completely.  

Discussion Note that the kinetic energy of water is negligible compared to the potential energy, and it can 
be ignored in the analysis. Also, the power output of an actual turbine will be less than 444 MW because of 
losses and inefficiencies. 
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5-20 A hydraulic turbine-generator is ge
combined turbine-generator efficiency and 

Assumptions 1 The elevation of the reserv
turbine exit is negligible.   

Analysis We take the free surface of the re
take the turbine exit as the reference level (
gz1 and pe2 = 0. The flow energy P/ρ at bo
(P1 = P2 = Patm). Further, the kinetic energy
is essentially motionless, and the kinetic e
potential energy of water at point 1 is   

        
m 1000

kJ 1m) 70)(m/s (9.81 2
11 



== gzpe

Then the rate at which the mechanical energ

r

         
kW 1031

kJ/kg 7kg/s)(0.68 1500(      

)( outmech,inmech,fluidmech,

=
=

=−=∆ eemE &&

The combined turbine-generator and the tur
determined from their definitions, 

       
kW 1031
kW 750

|| fluidmech,

outelect,
gen-turbine =

∆
=

E

W
&

&
η

       0
kW 1031
kW 800

|| fluidmech,

outshaft,
turbine ==

∆
=

E

W
&

&
η

Therefore, the reservoir supplies 1031 kW 
it to shaft work that drives the generator, wh

Discussion This problem can also be solv
energy instead of potential energy. It would
equal to the potential energy at the free surf
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nerating electricity from the water of a large reservoir. The 
the turbine efficiency are to be determined.   

oir remains constant. 2 The mechanical energy of water at the 

servoir to be point 1 and the turbine exit to be point 2. We also 
z2 = 0), and thus the potential energy at points 1 and 2 are pe1 = 
th points is zero since both 1 and 2 are open to the atmosphere 
 at both points is zero (ke1 = ke2 = 0) since the water at point 1 

nergy of water at turbine exit is assumed to be negligible. The 

kJ/kg 687.0
/s

/kg
22

=


  

y of the fluid is supplied to the turbine become 

1

750 kW

GeneratoTurbine 

70 m

)

)0( 11 =− pempem &&

 

bine efficiency are 

72.7% or      0.727=  
2 77.6% or      .776  

of mechanical energy to the turbine, which converts 800 kW of 
ich generates 750 kW of electric power. 

ed by taking point 1 to be at the turbine inlet, and using flow 
 give the same result since the flow energy at the turbine inlet is 
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5-21 Wind is blowing steadily at a certain velocity. The mechanical energy of air per unit mass, the power 
generation potential, and the actual electric power generation are to be determined. √EES 

Assumptions 1 The wind is blowing steadily at a constant uniform velocity. 2 The efficiency of the wind 
turbine is independent of the wind speed.   

Properties  The density of air is given to be ρ = 1.25 kg/m3. 

Analysis Kinetic energy is the only form of mechanical energy the wind possesses, and it can be converted 
to work entirely. Therefore, the power potential of the wind is its kinetic energy, which is V2/2 per unit 
mass, and m  for a given mass flow rate: 2/2V&

         kJ/kg072.0
/sm 1000

 kJ/kg1
2

)m/s 12(
2 22

22

mech =





===

Vkee  

          kg/s 452,29
4
m) (50

m/s) 12)(kg/m 25.1(
4

2
3

2

====
ππ

ρρ
D

VVA&m  

       W  kW  2121==== kJ/kg) 2kg/s)(0.07 452,29(mechmechmax emE &&&

The actual electric power generation is determined by multiplying the power generation potential by the 
efficiency,  

        W  kW 636===  kW)2121)(30.0(maxnewind turbielect W&& η

Therefore, 636 kW of actual power can be generated by this wind turbine at the stated conditions. 

Discussion The power generation of a wind turbine is proportional to the cube of the wind velocity, and 
thus the power generation will change strongly with the wind conditions.  

 

Wind 
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50 m 12 m/s 

Wind 
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5-22 Problem 5-21 is reconsidered. The effect of wind velocity and the blade span diameter on wind power 
generation as the velocity varies from 5 m/s to 20 m/s in increments of 5 m/s, and the diameter varies from 
20 m to 80 m in increments of 20 m is to be investigated.  

D1=20 "m" 
D2=40 "m" 
D3=60 "m" 
D4=80 "m" 
Eta=0.30 
rho=1.25 "kg/m3" 
m1_dot=rho*V*(pi*D1^2/4); W1_Elect=Eta*m1_dot*(V^2/2)/1000 "kW" 
m2_dot=rho*V*(pi*D2^2/4); W2_Elect=Eta*m2_dot*(V^2/2)/1000 "kW" 
m3_dot=rho*V*(pi*D3^2/4); W3_Elect=Eta*m3_dot*(V^2/2)/1000 "kW" 
m4_dot=rho*V*(pi*D4^2/4); W4_Elect=Eta*m4_dot*(V^2/2)/1000 "kW" 

 

D, m V, m/s m, kg/s Welect, kW 
20  5 

10 
15 
20 

1,963 
3,927 
5,890 
7,854 

7 
59 

199 
471 

40 5 
10 
15 
20 

7,854 
15,708 
23,562 
31,416 

29 
236 
795 
1885 

60 5 
10 
15 
20 

 17,671 
35,343 
53,014 
70,686 

66 
530 
1789 
4241 

80 5 
10 
15 
20 

31,416 
62,832 
94,248 

125,664 

118 
942 
3181 
7540 
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5-23E A differential thermocouple indicates that the temperature of water rises a certain amount as it flows 
through a pump at a specified rate. The mechanical efficiency of the pump is to be determined. 

Assumptions 1 The pump is adiabatic so that there is no heat transfer with the surroundings, and the 
temperature rise of water is completely due to frictional heating. 2 Water is an incompressible substance.   

Properties We take the density of water to be ρ = 62.4 lbm/ft3 and its specific heat to be C = 1.0 
Btu/lbm⋅°F. 

Analysis The increase in the temperature of water is due to the conversion of mechanical energy to thermal 
energy, and the amount of mechanical energy converted to thermal energy is equal to the increase in the 
internal energy of water, 

5-11

          m  lbm/s 6.93/s)ft 5.1)(lbm/ft 4.62( 33 === V&& ρ

        
hp 53.9

Btu/s 0.7068
hp 1F)F)(0.072Btu/lbm 0.1)(lbm/s (93.6

loss mech,

=






°°⋅=

∆=∆= TcmUE &&&

 

∆T =0.072°F 

Pump
27 hp

The mechanical efficiency of the pump is determined from the 
general definition of mechanical efficiency,   

        64.7% or      0.647
hp 27
hp 53.911

in mech,

lossmech,
pump =−=−=

W

E
&

&
η  

Discussion Note that despite the conversion of more than one-third of the mechanical power input into 
thermal energy, the temperature of water rises by only a small fraction of a degree. Therefore, the 
temperature rise of a fluid due to frictional heating is usually negligible in heat transfer analysis.   

 

 

. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution 
permitted only to teachers and educators for course preparation.  If you are a student using this Manual, you 
are using it without permission.   



Chapter 5  Mass, Bernoulli, and Energy Equations 

 
PROPRIETARY MATERIAL

5-24 Water is pumped from a lake to a storage tank at a specified rate. The overall efficiency of the pump-
motor unit and the pressure difference between the inlet and the exit of the pump are to be determined. √ 

Assumptions 1 The elevations of the tank and the lake remain constant. 2 Frictional losses in the pipes are 
negligible. 3 The changes in kinetic energy are negligible. 4 The elevation difference across the pump is 
negligible.   

Properties  We take the density of water to be ρ = 1000 kg/m3. 

Analysis (a) We take the free surface of the lake to be point 1 and the free surfaces of the storage tank to be 
point 2. We also take the lake surface as the reference level (z1 = 0), and thus the potential energy at points 
1 and 2 are pe1 = 0 and  pe2 = gz2. The flow energy at both points is zero since both 1 and 2 are open to the 
atmosphere (P1 = P2 = Patm). Further, the kinetic energy at both points is zero (ke1 = ke2 = 0) since the water 
at both locations is essentially stationary. The mass flow rate of water and its potential energy at point 2 are   

          m   kg/s70/s)m 070.0)( kg/m1000( 33 === V&& ρ

        kJ/kg 196.0
/sm 1000

kJ/kg 1m) 20)(m/s (9.81
22

2
11 =







== gzpe  

Then the rate of increase of the mechanical energy of water becomes 

kW 13.7kJ/kg) 6kg/s)(0.19 70()0()( 22inmech,outmech,fluidmech, ===−=−=∆ pempemeemE &&&&  

The overall efficiency of the combined pump-motor unit is determined from its definition, 

       67.2%or       0.672
 kW20.4
 kW7.13

inelect,

fluidmech,
motor-pump ==

∆
=

W

E
&

&
η  

(b) Now we consider the pump. The change in the mechanical energy of 
water as it flows through the pump consists of the change in the flow 
energy only since the elevation difference across the pump and the change 
in the kinetic energy are negligible. Also, this change must be equal to the 
useful mechanical energy supplied by the pump, which is 13.7 kW: 

2

Storage
tank 

1

Pump 
20 m

P
PP

meemE ∆=
−

=−=∆ V&&&&
ρ

12
inmech,outmech,fluidmech, )(  

Solving for ∆P and substituting, 

kPa  196=






 ⋅
=

∆
=∆

 kJ1
m kPa1

/sm 0.070
 kJ/s13.7 3

3
fluidmech,

V&

&E
P  

Therefore, the pump must boost the pressure of water by 196 kPa in order to raise its elevation by 20 m.   

Discussion Note that only two-thirds of the electric energy consumed by the pump-motor is converted to 
the mechanical energy of water; the remaining one-third is wasted because of the inefficiencies of the pump 
and the motor.   
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Bernoulli Equation  
 
5-25C The acceleration of a fluid particle along a streamline is called streamwise acceleration, and it is due 
to a change in speed along a streamline. Normal acceleration (or centrifugal acceleration), on the other 
hand, is the acceleration of a fluid particle in the direction normal to the streamline, and it is due to a 
change in direction.  
 
5-26C The Bernoulli equation can be expressed in three different ways as follows: 

(a) energies:     constant
2

2
=++ gzVP

ρ
 

(b) pressures:   constant
2

2
=++ gzVP ρρ  

(c) heads:        constant
2

2
==++ Hz

g
V

g
P
ρ

 

 
12-27C The three major assumptions used in the derivation of the Bernoulli equation are that the flow is 
steady, frictionless, and incompressible. 

 
5-28C The static pressure P is the actual pressure of the fluid. The dynamic pressure ρV2/2 is the pressure 
rise when the fluid in motion is brought to a stop. The hydrostatic pressure ρgz is not pressure in a real 
sense since its value depends on the reference level selected, and it accounts for the effects of fluid weight 
on pressure.  

The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, frictionless, 
and incompressible. 

 
5-29C The sum of the static and dynamic pressures is called the stagnation pressure, and it is expressed as 

. The stagnation pressure can be measured by a pitot tube whose inlet is normal to 
flow. 

2/2
stag VPP ρ+=

 
5-30C The pressure head P/ρg is the height of a fluid column that produces the static pressure P. The 
velocity head V2/2 is the elevation needed for a fluid to reach the velocity V during frictionless free fall. 
The elevation head z is the height of a fluid relative to a reference level.   

 
5-31C The line that represents the sum of the static pressure and the elevation heads, P/ρg + z, is called the 
hydraulic grade line. The line that represents the total head of the fluid, P/ρg + V2/2g + z, is called the 
energy line. For stationary bodies such as reservoirs or lakes, the EL and HGL coincide with the free 
surface of the liquid.  

  
5-32C For open channel flow, the hydraulic grade line (HGL) coincides with the free surface of the liquid. 
At the exit of a pipe discharging to the atmosphere, it coincides with the center of the  pipe. 

 
5-33C With no losses and a 100% efficient nozzle, the water stream could reach to the water level in the 
tank, or 20 meters. In reality, friction losses in the hose, nozzle inefficiencies, orifice losses and air drag 
would prevent attainment of the maximum theoretical height. 

  
5-34C The lower density liquid can go over a higher wall, provided that cavitation pressure is not reached. 
Therefore, oil can go over a higher wall.  
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5-35C Siphoning works because of the elevation and thus pressure difference between the inlet and exit of 
a tube. The pressure at the tube exit and at the free surface of a liquid is the atmospheric pressure. When the 
tube exit is below the free surface of the liquid, the elevation head difference drives the flow through the 
tube. At sea level, 1 atm pressure can support about 10.3 m of cold water (cold water has a low vapor 
pressure).  Therefore, siphoning cold water over a 7 m wall is feasible.  

 
5-36C At sea level, a person can siphon water over a wall as high as 10.3 m. At the top of a high mountain 
where the pressure is about half of the atmospheric pressure at sea level, a person can siphon water over a 
wall that is only half as high. An atmospheric pressure of 58.5 kPa is insufficient to support a 8.5 meter 
high siphon.  

 
5-37C By Bernoulli’s Equation, the smaller pipe section is consistent with higher velocity and concomitant 
lower pressure. Thus Manometer A is correct. The fluid levels in a manometer is independent of the flow 
direction, and reversing the flow direction will have no effect on the manometer.  

 
5-38C The arrangement B measures the total head and static head at the same location, and thus it is more 
accurate. The static probe in arrangement A will indicate D/2 less water head, and thus the difference 
between the static and stagnation pressures (the dynamic pressure) will be larger. Consequently, 
arrangement A will indicate a higher velocity. In the case of air, the static pressure difference corresponding 
to the elevation head of D/2 is negligible, and thus both arrangements will indicate the same velocity.  
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Chapter 5  Mass, Bernoulli, and Energy Equations 
5-39 A water pipe bursts as a result of freezing, and water shoots up into the air a certain height. The gage 
pressure of water in the pipe is to be determined. √ 

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable). 2 The water pressure in the pipe at the burst section is equal to the 
water main pressure. 3 Friction between the water and air is negligible. 4 The irreversibilities that may 
occur at the burst section of the pipe due to abrupt expansion are negligible.  

Properties We take the density of water to be 1000 kg/m3. 

Analysis This problem involves the conversion of flow, kinetic, and potential energies to each other 
without involving any pumps, turbines, and wasteful components with large frictional losses, and thus it is 
suitable for the use of the Bernoulli equation.  The water height will be maximum under the stated 
assumptions. The velocity inside the hose is relatively low (V1 ≅ 0) and we take the burst section of the pipe 
as the reference level (z1 = 0). At the top of the water trajectory V2 = 0, and atmospheric pressure pertains. 
Then the Bernoulli Equation simplifies to 

             2
gage1,

2
1

2
1
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2
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22
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g
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g
PPz

g
P
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Solving for P1,gage  and substituting, 

kPa  334=







⋅







== 22

23
2gage1, m/s kg1000

 kN1
 kN/m1

 kPa1)m 34)(m/s 81.9)( kg/m1000(gzP ρ  

Therefore, the pressure in the main must be at least 334 kPa above the atmospheric pressure.   
 
Discussion The result obtained by the Bernoulli equation represents a limit, and should be interpreted 
accordingly. It tells us that the water pressure (gage) cannot possibly be less than 334 kPa (giving us a 
lower limit), and in all likelihood, the pressure will be much higher. 
 

2

1

Water

34 m
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5-40 The velocity of an aircraft is to be measured by a Pitot-static probe. For a given differential pressure 
reading, the velocity of the aircraft is to be determined. √ 

Assumptions 1The air flow over the aircraft is steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 Standard atmospheric conditions exist. 3 
The wind effects are negligible. 

Properties The density of the atmosphere at an elevation of 3000 m is ρ = 0.909 kg/m3. 

Analysis We take point 1 at the entrance of the tube whose opening is parallel to flow, and point 2 at the 
entrance of the tube whose entrance is normal to flow. Noting that point 2 is a stagnation point and thus V2 
= 0 and z1 =  z2, the application of the Bernoulli equation between points 1 and 2 gives 

             
ρρρρ
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112
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h 
Pitot
Tube

Solving for V1 and substituting, 

              km/h 292m/s 81.2 ==






 ⋅
=

−
=

N 1
m/s kg1

 kg/m909.0
)N/m 3000(2)(2 2

3

2
1

1 ρ
PPstagV  

since 1 Pa = 1 N/m2 and 1 m/s = 3.6 km/h.  
 
Discussion Note that the velocity of an aircraft can be determined 
by simply measuring the differential pressure on a Pitot-static 
probe.   
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5-41 The bottom of a car hits a sharp rock and a small hole develops at the bottom of its gas tank. For a 
given height of gasoline, the initial velocity of the gasoline out of the hole is to be determined. Also, the 
variation of velocity with time and the effect of the tightness of the lid on flow rate are to be discussed. √ 

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable). 2 The air space in the tank is at atmospheric pressure. 3 The splashing 
of the gasoline in the tank during travel is not considered. 

Analysis This problem involves the conversion of flow, kinetic, and potential energies to each other 
without involving any pumps, turbines, and wasteful components with large frictional losses, and thus it is 
suitable for the use of the Bernoulli equation. We take point 1 to be at the free surface of gasoline in the 
tank so that P1 = Patm (open to the atmosphere) V1 ≅ 0 (the tank is large relative to the outlet), and z1 = 0.3 m  
and z2 = 0 (we take the reference level at the hole. Also, P2 = Patm (gasoline discharges into the 
atmosphere). Then the Bernoulli Equation simplifies to  

5-17
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Solving for V2 and substituting, 

              m/s 2.43=== m) 3.0)(m/s 81.9(22 2
12 gzV  

Therefore, the gasoline will initially leave the tank with a velocity of 2.43 m/s.  
 
 
Discussion The Bernoulli equation applies along a streamline, and streamlines generally do not make sharp 
turns. The velocity will be less than 2.43 m/s since the hole is probably sharp-edged and it will cause some 
head loss.  

2 

1 

Gas Tank 

V2 

30 cm

 As the gasoline level is reduced, the velocity will decrease since velocity is proportional to the 
square root of liquid height. If the lid is tightly closed and no air can replace the lost gasoline volume, the 
pressure above the gasoline level will be reduced, and the velocity will be decreased. 
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5-42E The drinking water needs of an office are met by large water bottles with a plastic hose inserted in it. 
The minimum filling time of an 8-oz glass is to be determined when the bottle is full and when it is near 
empty. √ 

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable). 2 All losses are neglected to obtain the minimum filling time.  

Analysis  We take point 1 to be at the free surface of water in the bottle and point 2 at the exit of the tube so 
that P1 = P2 = Patm (the bottle is open to the atmosphere and water discharges into the atmosphere), V1 ≅ 0 
(the bottle is large relative to the tube diameter), and z2 = 0 (we take point 2 as the reference level). Then 
the Bernoulli Equation simplifies to 

             12
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2 

1 

2 ft

1.5 ft

0.25 inSubstituting, the discharge velocity of water and the filling time are 
determined as follows:   

(a) Full bottle (z1 = 3.5 ft): 

 ft/s 0.15ft) 5.3)(ft/s 2.32(2 2
2 ==V  

               2422 ft 1041.34/ft) 12/25.0(4/ −×=== ππDA

              s 1.6=
×

=== − )ft/s 15)(ft 1041.3(
ft 00835.0

24

3

2AV
t V

V
V
&∆  

(b) Empty bottle (z1 = 2 ft):  

 ft/s 3.11ft) 2)(ft/s 2.32(2 2
2 ==V  

               s 2.2=
×

===∆ − )ft/s 3.11)(ft 1041.3(
ft 00835.0

24

3

2AV
t V

V
V
&

 

Discussion The siphoning time is determined assuming frictionless flow, and thus this is the minimum time 
required. In reality, the time will be longer because of friction between water and the tube surface.  
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5-43 The static and stagnation pressures in a horizontal pipe are measured. The velocity at the center of the 
pipe is to be determined. √ 

Assumptions The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable).  

Analysis We take points 1 and 2 along the centerline of the pipe, with point 1 directly under the piezometer 
and point 2 at the entrance of the Pitot-static probe (the stagnation point). This is a steady flow with straight 
and parallel streamlines, and thus the static pressure at any point is equal to the hydrostatic pressure at that 
point. Noting that point 2 is a stagnation point and thus V2 = 0 and z1 =  z2, the application of the Bernoulli 
equation between points 1 and 2 gives 
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Substituting the P1 and P2 expressions give 
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Solving for V1 and substituting, 

              m/s 1.72=−=−= m] )20.035.0)[(m/s 81.9(2)(2 2
piezopitot1 hhgV  

Discussion Note that to determine the flow velocity, all we need is 
to measure the height of the excess fluid column in the Pitot-static 
probe. 

2 1 VWater 

35 cm 
20 cm  
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5-44 A water tank of diameter Do and height H open to the atmosphere is initially filled with water. An 
orifice of diameter D with a smooth entrance (no losses) at the bottom drains to the atmosphere. Relations 
are to be developed for the time required for the tank to empty completely and half-way. √ 

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow 
is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is 
applicable).  

Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of orifice. We take the 
reference level at the orifice (z2 = 0), and take the positive direction of z to be upwards. Noting that the fluid 
at both points is open to the atmosphere (and thus P1 = P2 = Patm) and that the fluid velocity at the free 
surface is very low  (V1 ≅ 0), the Bernoulli equation between these two points simplifies to 
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For generality, we express the water height in the tank at any time t by z, and the discharge velocity by 
gzV 22 = .  Note that water surface in the tank moves down as the tank drains, and thus z is a variable 

whose value changes from H at the beginning to 0 when the tank is emptied completely.    
We denote the diameter of the orifice by D, and the diameter of the tank by Do. The flow rate of 

water from the tank is obtained by multiplying the discharge velocity by the orifice cross-sectional area, 

gzDVA 2
4

2

2orifice
π

==V&  

2 

D 

HD0 

Wa r te1 
Then the amount of water that flows through the orifice during a 
differential time interval dt is 

dtgzDdtd 2
4

2π
==VV &            (1) 

which, from conservation of mass, must be equal to the decrease 
in the volume of water in the tank, 

dz
D

dzAd
4

)(
2
0

tank
π

−=−=V    (2) 

where dz is the change in the water level in the tank during dt. (Note that dz is a negative quantity since the 
positive direction of z is upwards. Therefore, we used –dz to get a positive quantity for the amount of water 
discharged). Setting Eqs. (1) and (2) equal to each other and rearranging, 
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The last relation can be integrated easily since the variables are separated. Letting tf be the discharge time 
and integrating it from t = 0 when z = zi = H to t = tf when z = zf gives 
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Then the discharging time for the two cases becomes as follows: 

(a) The tank empties halfway:  zi = H and zf = H/2:             









−=

g
H

g
H

D
Dt f

2
2

2
0  

(b) The tank empties completely:  zi = H and zf = 0:                
g
H

D
D

f
2

2

2
0=t  

Discussion Note that the discharging time is inversely proportional to the square of the orifice diameter.  
Therefore, the discharging time can be reduced to one-fourth by doubling the diameter of the orifice. 
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5-45  Water discharges to the atmosphere from the orifice at the bottom of a pressurized tank. Assuming 
frictionless flow, the discharge rate of water from the tank is to be determined. √EES 

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow 
is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is 
applicable).  

Properties  We take the density of water to be 1000 kg/m3. 

Analysis We take point 1 at the free surface of the tank, and point 2 at the exit of orifice, which is also 
taken to be the reference level (z2 = 0). Noting that the fluid velocity at the free surface is very low  (V1 ≅ 0) 
and water discharges into the atmosphere (and thus P2 = Patm), the Bernoulli equation simplifies to 
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Solving for V2 and substituting, the discharge velocity is determined to   

m/s 21.4
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Then the initial rate of discharge of water becomes  

2

1 

10 cm

Water 
Tank 

Air, 300 kPa

3 m

/sm 0.168 3==== m/s) 4.21(
4

m) 10.0(
4

2

2

2

2orifice
ππ VDVAV&  

Discussion Note that this is the maximum flow rate since the 
frictional effects are ignored. Also, the velocity and the flow rate 
will decrease as the water level in the tank decreases.   
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5-46  Problem 5-45 is reconsidered. The effect of water height in the tank on the discharge velocity as the 
water height varies from 0 to 5 m in increments of 0.5 m is to be investigated.  
 
g=9.81 "m/s2" 
rho=1000 "kg/m3" 
d=0.10 "m" 
 
P1=300 "kPa" 
P_atm=100 "kPa" 
V=SQRT(2*(P1-P_atm)*1000/rho+2*g*h) 
Ac=pi*D^2/4 
V_dot=Ac*V 
 

h, m V, m/s V& , m3/s 
0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 

20.0 
20.2 
20.5 
20.7 
21.0 
21.2 
21.4 
21.6 
21.9 
22.1 
22.3 

0.157 
0.159 
0.161 
0.163 
0.165 
0.166 
0.168 
0.170 
0.172 
0.174 
0.175 

 
 
 
 

0 1 2 3 4 5
20

20.5

21

21.5

22

22.5

h, m  

V,
 m

/s
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5-47E A siphon pumps water from a large reservoir to a lower tank which is initially empty. Water leaves 
the tank through an orifice. The height the water will rise in the tank at equilibrium is to be determined. √ 

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable). 2 Both the tank and the reservoir are open to the atmosphere.  3 The 
water level of the reservoir remains constant.   

Analysis  We take the reference level to be at the bottom of the tank, and the water height in the tank at any 
time to be h. We take point 1 to be at the free surface of reservoir, point 2 at the exit of the siphon, which is 
placed at the bottom of the tank, and point 3 at the free surface of the tank, and point 4 at the exit of the 
orifice at the bottom of the tank.  Then z1 = 20 ft, z2 = z4 = 0, z3 = h,  P1 = P3 = P4 = Patm (the reservoir is 
open to the atmosphere and water discharges into the atmosphere) P2 = Patm+ρgh  (the hydrostatic pressure 
at the bottom of the tank where the siphon discharges), and V1 ≅ V3 ≅ 0 (the free surfaces of reservoir and 
the tank are large relative to the tube diameter). Then the Bernoulli Equation between 1-2 and 3-4 
simplifies to 
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Noting that the diameters of the tube and the orifice are the same, 
the flow rates of water into and out of the tank will be the same 
when the water velocities in the tube and the orifice are equal since   

  424242                VVAVAV =→=→=VV &&

Setting the two velocities equal to each other gives 

    ft  7.5===→=−→=−→=
2
ft 15

2
                     2)(2        1

1142
zhhhzghhzgVV  

3

4

2

1

Reservoir 

Water
Tank 

2 in

15 ft 

h 

Therefore, the water level in the tank will stabilize when the 
water level rises to 7.5 ft. 

Discussion This result is obtained assuming negligible friction. The result would be somewhat different if 
the friction in the pipe and orifice were considered.   
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5-48 Water enters an empty tank steadily at a specified rate.  An orifice at the bottom allows water to 
escape.  The maximum water level in the tank is to be determined, and a relation for water height z as a 
function of time is to be obtained. 

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow 
through the orifice is steady, incompressible, and irrotational with negligible frictional effects (so that the 
Bernoulli equation is applicable).  

Analysis (a) We take point 1 at the free surface of the tank, and point 2 at the exit of orifice. We take the 
reference level at the orifice (z2 = 0), and take the positive direction of z to be upwards. Noting that the fluid 
at both points is open to the atmosphere (and thus P1 = P2 = Patm) and that the fluid velocity at the free 
surface is very low  (V1 ≅ 0) (it becomes zero when the water in the tank reaches its maximum level), the 
Bernoulli equation between these two points simplifies to 
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Then the mass flow rate through the orifice for a water height of z becomes 
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Setting  z = hmax and (the incoming flow rate) gives the desired 
relation for the maximum height the water will reach in the tank, 
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(b) The amount of water that flows through the orifice and the increase in the amount of water in
during a differential time interval dt are 

dtgz
D

dtmdm 2
4

2
0

outout
π

ρ== &             

dz
D

dzAdm T

4

2

tanktank
π

ρρ ==   

The amount of water that enters the tank during dt is dtmdm inin &=  (Recall that = c
Substituting them into the conservation of mass relation dm

inm&

outintank dmdm −=  gives   

dtmdtmdm outintank && −=     →     dtgz
D

mdz
DT











−= 2

44

2
0

in

2 π
ρ

π
ρ &   

Separating the variables, and integrating it from z = 0 at t = 0 to z = z at time t = t gives 

dt
gzDm

dzDT =
− 22

04
1

in

2
4
1

ρπ

ρπ

&
        →     tdt

gzDm

dzD t

t

z

z

T ==
− ∫∫ == 00 2

04
1
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2
4
1

2ρπ

ρπ

&
 

Performing the integration, the desired relation between the water height z and time t is obtained to

 t
m

gzDm
mgzD

gD

DT =











 −
−

in

2
04

1
in

in
2
04

1
22

04
1

2
2
1 2

ln2
)2( &

&
&

ρπ
ρπ

ρπ

ρπ
 

Discussion Note that this relation is implicit in z, and thus we can’t obtain a relation in the form
Substituting a z value in the left side gives the time it takes for the fluid level in the tank to reach th
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Chapter 5  Mass, Bernoulli, and Energy Equations 

 
PROPRIETARY MATERIAL

5-49E Water flows through a horizontal pipe that consists of two sections at a specified rate. The 
differential height of a mercury manometer placed between the two pipe sections is to be determined. √ 

Assumptions 1The flow through the pipe is steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 The losses in the reducing section are 
negligible. 

Properties The densities of mercury and water are ρHg = 847 lbm/ft3 and ρw = 62.4 lbm/ft3. 

Analysis We take points 1 and 2 along the centerline of the pipe over the two tubes of the manometer. 
Noting that  z1 =  z2, the Bernoulli equation between points 1 and 2 gives 

             
2

)(          
22

2
1

2
2

212

2
22

1

2
11 VVPPz

g
V

g
Pz

g
V

g
P w −

=−→++=++
ρ

ρρ
         (1) 

We let the differential height of the mercury manometer be h and the distance between the centerline and 
the mercury level in the tube where mercury is raised be s. Then the pressure difference P2 – P1 can also be 
expressed as 

                 (2)   )(                     )( 2121 ghPPghgsPhsgP wHgHgww ρρρρρ −=−→++=++

Combining Eqs. (1) and (2) and solving for h, 
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Calculating the velocities and substituting, 

ft/s 53.1
gal 1

ft 0.13368
4/ft) (4/12

gal/s 1
4/

3

22
11

1 =







===
ππDA

V VV &&
 

1 2
4 in 

h 

s 

2 in

ft/s 13.6
gal 1

ft 0.13368
4/ft) (2/12

gal/s 1
4/

3

22
22

2 =







===
ππDA

V VV &&
 

in 0.52==
−

−
= ft 0435.0

)14.62/847)(ft/s 2(32.2
)ft/s 53.1(ft/s) 13.6(

2

22
h  

Therefore, the differential height of the mercury column will be 0.52 in.   
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5-50 An airplane is flying at a certain altitude at a given speed. The pressure on the stagnation point on the 
nose of the plane is to be determined, and the approach to be used at high velocities is to be discussed. √ 

Assumptions 1The air flow over the aircraft is steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 Standard atmospheric conditions exist. 3 
The wind effects are negligible. 

Properties The density of the atmospheric air at an elevation of 12,000 m is ρ = 0.312 kg/m3. 

Analysis We take point 1 well ahead of the plane at the level of the nose, and point 2 at the nose where the 
flow comes to a stop. Noting that point 2 is a stagnation point and thus V2 = 0 and z1 =  z2, the application of 
the Bernoulli equation between points 1 and 2 gives 

             
ρρρρρ

gage stag,atm
2

112
2

1
2

2
22
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2
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2
           

2
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−
=→
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Solving for Pstag, gage  and substituting, 

              Pa  481==








⋅
== 2

2

232
1

gage stag, N/m 481
m/skg 1
N 1

2
m/s) 6.3/200)(kg/m 312.0(

2
VP ρ  

since 1 Pa = 1 N/m2 and 1 m/s = 3.6 km/h.  
 
Discussion A flight velocity of 1050 km/h = 292 m/s corresponds to a Mach number much greater than 0.3 
(the speed of sound is about 340 m/s at room conditions, and lower at higher altitudes, and thus a Mach 
number of 292/340 = 0.86). Therefore, the flow can no longer be assumed to be incompressible, and the 
Bernoulli equation given above cannot be used. This problem can be solved using the modified Bernoulli 
equation that accounts for the effects of compressibility, assuming isentropic flow.   
 
 

2

200 km/h 

Altitude 
12,000 m 

1 
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5-51 A Pitot-static probe is inserted into the duct of an air heating system parallel to flow, and the 
differential height of the water column is measured. The flow velocity and the pressure rise at the tip of the 
Pitot-static probe are to be determined. √ 

Assumptions 1The flow through the duct is steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 Air is an ideal gas.  

Properties  We take the density of water to be ρ = 1000 kg/m3. The gas constant of air is R = 0.287 
kPa⋅m3/kg⋅K. 

Analysis We take point 1 on the side of the probe where the entrance is parallel to flow and is connected to 
the static arm of the Pitot-static probe, and point 2 at the tip of the probe where the entrance is normal to 
flow and is connected to the dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point 
and thus V2 = 0 and z1 =  z2, the application of the Bernoulli equation between points 1 and 2 gives 
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where the pressure rise at the tip of the Pitot-static probe is 

Pa  235==










⋅
==−

2

2
23
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N/m 235

m/s kg1
N 1m) 024.0)(m/s 81.9)( kg/m1000(  ghPP wρ  

1 
2 Air 

h=2.4 cm 

V

Also,  3
3

kg/m 074.1
)K 27345)(K/kgmkPa 287.0(

kPa 98
=

+⋅⋅
==

RT
P

airρ  

Substituting, 

m/s 20.9=








 ⋅
=

N 1
m/skg 1

kg/m 1.074
)N/m 235(2 2

3

2

1V  

 
Discussion Note that the flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by 
inserting the probe into the pipe or duct parallel to flow, and reading the differential pressure height. Also 
note that this is the velocity at the location of the tube. Several readings at several locations in a cross-
section may be required to determine the mean flow velocity. 
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5-52 The water in an above the ground swimming pool is to be emptied by unplugging the orifice of a 
horizontal pipe attached to the bottom of the pool. The maximum discharge rate of water is to be 
determined.  √EES 

 Assumptions 1 The orifice has a smooth entrance, and all frictional losses are negligible. 2 The flow is 
steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is 
applicable).  

Analysis We take point 1 at the free surface of the pool, and point 2 at the exit of pipe. We take the 
reference level at the pipe exit (z2 = 0). Noting that the fluid at both points is open to the atmosphere (and 
thus P1 = P2 = Patm) and that the fluid velocity at the free surface is very low  (V1 ≅ 0), the Bernoulli 
equation between these two points simplifies to 

             12

2
2

12

2
22

1

2
11 2            

2
           

22
gzV

g
Vzz

g
V

g
Pz

g
V

g
P

=→=→++=++
ρρ

 

The maximum discharge rate occurs when the water height in the pool is a maximum, which is the case at 
the beginning and thus z1 = h. Substituting, the maximum flow velocity and discharge rate become 

 m/s 6.26m) 2)(m/s 81.9(22 2
max,2 === ghV  

L/s 4.43===== /sm 0.00443m/s) 26.6(
4

m) 03.0(
4

3
2

max,2

2

max,2pipemax
ππ VDVAV&  

Discussion The result above is obtained by disregarding all frictional effects. The actual flow rate will be 
less because of frictional effects during flow and the resulting pressure drop. Also, the flow rate will 
gradually decrease as the water level in the pipe decreases. 
 
 

2 

1

m 

25 m 

3 cm 
Swimming pool

2 m 
10 m 
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5-53 The water in an above the ground swimming pool is to be emptied by unplugging the orifice of a 
horizontal pipe attached to the bottom of the pool. The time it will take to empty the tank is to be 
determined.  √EES 

 Assumptions 1 The orifice has a smooth entrance, and all frictional losses are negligible. 2 The flow is 
steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is 
applicable).  

Analysis We take point 1 at the free surface of water in the pool, and point 2 at the exit of pipe. We take the 
reference level at the pipe exit (z2 = 0). Noting that the fluid at both points is open to the atmosphere (and 
thus P1 = P2 = Patm) and that the fluid velocity at the free surface is very low  (V1 ≅ 0), the Bernoulli 
equation between these two points simplifies to 
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For generality, we express the water height in the pool at any time t by z, and the discharge velocity by 
gzV 22 = .  Note that water surface in the pool moves down as the pool drains, and thus z is a variable 

whose value changes from h at the beginning to 0 when the pool is emptied completely.    
We denote the diameter of the orifice by D, and the diameter of the pool by Do. The flow rate of 

water from the pool is obtained by multiplying the discharge velocity by the orifice cross-sectional area, 

gzDVA 2
4

2

2orifice
π

==V&  

Then the amount of water that flows through the orifice during a differential time interval dt is 

dtgzDdtd 2
4

2π
==VV &            (1) 

which, from conservation of mass, must be equal to the decrease in the volume of water in the pool, 

dz
D

dzAd
4

)(
2
0

tank
π

−=−=V    (2) 

where dz is the change in the water level in the pool during dt. (Note that dz is a negative quantity since the 
positive direction of z is upwards. Therefore, we used –dz to get a positive quantity for the amount of water 
discharged). Setting Eqs. (1) and (2) equal to each other and rearranging, 
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The last relation can be integrated easily since the variables are separated. Letting tf be the discharge time 
and integrating it from t = 0 when z = h to t = tf when z = 0 (completely drained pool) gives 

g
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Substituting, the draining time of the pool will be  

                 h 19.7s 950,70
m/s 81.9
m) 2(2

)m 03.0(
m) 10(

22

2
===ft  

2

1

m 

25 m 

D=3 cm 
Swimming pool

2 m 
D0= 10 m

Discussion This is the minimum discharging time 
since it is obtained by neglecting all friction; the 
actual discharging time will be longer. Note that the 
discharging time is inversely proportional to the 
square of the orifice diameter.  Therefore, the 
discharging time can be reduced to one-fourth by 
doubling the diameter of the orifice. 
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5-54 Problem 5-53 is reconsidered. The effect of the discharge pipe diameter on the time required to empty 
the pool completely as the diameter varies from 1 to 10 cm in increments of 1 cm is to be investigated. 

 
g=9.81 "m/s2" 
rho=1000 "kg/m3" 
h=2 "m" 
D=d_pipe/100 "m" 
D_pool=10 "m" 
 
V_initial=SQRT(2*g*h) "m/s" 
Ac=pi*D^2/4 
V_dot=Ac*V_initial*1000 "m3/s" 
t=(D_pool/D)^2*SQRT(2*h/g)/3600 "hour" 
 
 
 
 

Pipe diameter 
D, m 

Discharge time 
t, h 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

177.4 
44.3 
19.7 
11.1 
7.1 
4.9 
3.6 
2.8 
2.2 
1.8 
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5-55 Air flows upward at a specified rate through an inclined pipe whose diameter is reduced through a 
reducer. The differential height between fluid levels of the two arms of a water manometer attached  across 
the reducer is to be determined. √ Mod Feb’05. 

Assumptions 1The flow through the duct is steady, incompressible and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 Air is an ideal gas. 3 The effect of air 
column on the pressure change is negligible because of its low density. 3 The air flow is parallel to the 
entrance of each arm of the manometer, and thus no dynamic effects are involved. 

Properties  We take the density of water to be ρ = 1000 kg/m3. The gas constant of air is R = 0.287 
kPa⋅m3/kg⋅K. 

Analysis We take points 1 and 2 at the lower and upper connection points, respectively, of the two arms of 
the manometer, and take the lower connection point as the reference level. Noting that the effect of 
elevation on the pressure change of a gas is negligible, the application of the Bernoulli equation between 
points 1 and 2 gives 
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Substituting, 

Pa 612N/m 612
m/skg 1
N 1

2
m/s) 9.15(m/s) 8.35()kg/m 1.19(  2

2
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3
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





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

⋅

−
=− PP
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differential height of water in the manometer corresponding to this pressure change is determined from 
P ρ=∆  to be 

cm 6.24==

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
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−
= m 0624.0
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Discussion When the effect of air column on pressure change is considered, the pressure change becomes   

Pa 614N/m 614N/m )2612(
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This difference between the two results (612 and 614 Pa) is less than 1%. Therefore, the effect of air 
column on pressure change is, indeed, negligible as assumed. In other words, the pressure change of air in 
the duct is almost entirely due to velocity change, and the effect of elevation change is negligible. 

Also, if we were to account for the ∆z of air flow, then it would be more proper to account for the 
∆z of air in the manometer by using ρwater - ρair instead of ρwater when calculating h. The additional air 
column in the manometer tends to cancel out the change in pressure due to the elevation difference in the 
flow in this case. 
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5-56E Air is flowing through a venturi meter with known diameters and measured pressures. A relation for 
the flow rate is to be obtained, and its numerical value is to be determined.    

Assumptions 1The flow through the venturi is steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 The effect of air column on the pressure 
change is negligible because of its low density, and thus the pressure can be assumed to be uniform at a 
given cross-section of the venturi meter (independent of elevation change). 3 The flow is horizontal (this 
assumption is usually unnecessary for gas flow.). 

Properties  The density of air is given to be ρ = 0.075 lbm/ft3.   

Analysis We take point 1 at the main flow section and point 2 at the throat along the centerline of the 
venturi meter.  Noting that z1 = z2, the application of the Bernoulli equation between points 1 and 2 gives 
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     (1) 

The flow is assumed to be incompressible and thus the density is constant. Then the conservation of mass 
relation for this single stream steady flow device can be expressed as 
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Substituting into Eq. (1),     
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Solving for  gives the desired relation for the flow rate, V&

])/(1[
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The flow rate for the given case can be determined by substituting the given values into this relation to be 

/sft 4.48 3=


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 ⋅

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Discussion Venturi meters are commonly used as flow meters to measure the flow rate of gases and liquids 
by simply measuring the pressure difference P1 - P2 by a manometer or pressure transducers. The actual 
flow rate will be less than the value obtained from Eq. (3) because of the friction losses along the wall 
surfaces in actual flow. But this difference can be as little as 1% in a well-designed venturi meter. The 
effects of deviation from the idealized Bernoulli flow can be accounted for by expressing Eq. (3) as    

])/(1[
)(2

2
12

21
2 AA

PP
ACc

−

−
=

ρ
V&       

where Cc is the venturi discharge coefficient whose value is less than 1 (it is as large as 0.99 for well-
designed venturi meters in certain ranges of flow). For Re > 105, the value of venturi discharge coefficient 
is usually greater than 0.96.  
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5-57 The gage pressure in the water mains of a city at a particular location is given. It is to be determined if 
this main can serve water to neighborhoods that are at a given elevation relative to this location. √ 

Assumptions Water is incompressible and thus its density is constant.   

Properties  We take the density of water to be ρ = 1000 kg/m3.   

Analysis Noting that the gage pressure at a dept of h in a fluid is given by , the height of a 
fluid column corresponding to a gage pressure of 400 kPa is determined to be  

ghP watergage ρ=

m 8.40
N 1
m/skg 1

)m/s 81.9)(kg/m (1000
N/m 000,400 2

23

2
=









 ⋅
==

g
P

h
water

gage

ρ
 

which is less than 50 m. Therefore, this main cannot serve 
water to neighborhoods that are 50 m above this location.  Water Main, 400 kPa 
Discussion Note that h must be much greater than 50 m for water 
to have enough pressure to serve the water needs of the 
neighborhood. 
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PROPRIETARY MATERIAL

5-58 A hand-held bicycle pump with a liquid reservoir is used as an atomizer by forcing air at a high 
velocity through a small hole. The minimum speed that the piston must be moved in the cylinder to initiate 
the atomizing effect is to be determined.  √ 

Assumptions 1The flows of air and water are steady, incompressible, and irrotational with negligible 
frictional effects (so that the Bernoulli equation is applicable). 2 Air is an ideal gas. 3 The liquid reservoir is 
open to the atmosphere.  4 The device is held horizontal. 5 The water velocity through the tube is low. 

Properties  We take the density of water to be ρ = 1000 kg/m3. The gas constant of air is R = 0.287 
kPa⋅m3/kg⋅K. 

Analysis We take point 1 at the exit of the hole, point 2 in air far from the hole on a horizontal line, point 3 
at the exit of the tube in air stream (so that points 1 and 3 coincide), and point 4 at the free surface of the 
liquid in the reservoir (P2 = P4 = Patm and P1 = P3). We also take the level of the hole to be the reference 
level (so that z1 = z2 = z3 =0 and  z4 = -h).  Noting that V2 ≅ V3 ≅ V4 ≅ 0, the Bernoulli equation for the air 
and water streams becomes 

Water (3-4):    ghPPh
g

P
g

P
z

g
V

g
P

z
g

V
g

P
atm

atm
water1

1
4

2
44

3

2
33          )(        

22
ρ

ρρρρ
−=−→−+=→++=++      (1) 

Air (1-2):   
air

1
1

2
11

2

2
22

1

2
11 )(2

        
2

        
22 ρρρρρ

PP
V

g
P

g
V

g
P

z
g

V
g

P
z

g
V

g
P atmatm −

=→=+→++=++               (2) 

where 

 3
3

kg/m 13.1
)K 27320)(K/kgmkPa 287.0(

kPa 95
=

+⋅⋅
==

RT
P

airρ  

Combining Eqs. (1) and (2) and substituting the numerical values, 

m/s 41.7
 kg/m1.13

)m 1.0)(m/s 81.9)( kg/m1000(2 
2)(2

 3

23

air

water

air

1
1 ===

−
=

ρ
ρ

ρ
ghPP

V atm  

Taking the flow of air to be steady and incompressible, the conservation of mass for air can be expressed as 

12
piston

2
hole

hole
piston

hole
pistonholeholepistonpistonholepiston 4/

4/
            V

D
D

V
A
A

VAVAV
π
π

==→=→=VV &&  

Simplifying and substituting, the piston velocity is determined to be  

m/s 0.15=





=










= m/s) 7.41(

cm 5
cm 3.0 2

1

2

piston

hole
piston V

D
D

V  

4

Liquid 
rising 

2

3
1 Air 

Discussion In reality, the piston velocity must be higher to 
overcome the losses. Also, a lower piston velocity will do the job 
if the diameter of the hole is reduced.    
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PROPRIETARY MATERIAL

5-59 The water height in an airtight pressurized tank is given. A hose pointing straight up is connected to 
the bottom of the tank.  The maximum height to which the water stream could rise is to be determined. √ 

Assumptions 1 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that 
the Bernoulli equation is applicable). 2 The friction between the water and air is negligible.   

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take point 1 at the free surface of water in the tank, and point 2 at the top of the water 
trajectory. Also, we take the reference level at the bottom of the tank. At the top of the water trajectory V2 
= 0, and atmospheric pressure pertains. Noting that z1 = 20 m, P1,gage = 2 atm, P2 = Patm,  and that the fluid 
velocity at the free surface of the tank is very low  (V1 ≅ 0), the Bernoulli equation between these two 
points simplifies to 

1
gage1,

1
1

221
1

2

2
22

1

2
11                   

22
z

g
P

z
g
PP

zz
g

P
z

g
P

z
g

V
g

P
z

g
V

g
P atmatm +=+

−
=→+=+→++=++

ρρρρρρ
 

Substituting, 

       m 40.7=+








 ⋅










= 20

N 1
m/skg 1

atm 1
N/m 325,101

)m/s 81.9)(kg/m 1000(
atm 2 22

232z  2

1 
h 

2 atm 

20 m 

Therefore, the water jet can rise as high as 40.7 m into the sky from the ground. 
 
Discussion The result obtained by the Bernoulli equation represents the 
upper limit, and should be interpreted accordingly. It tells us that the 
water cannot possibly rise more than 40.7 m (giving us an upper limit), 
and in all likelihood, the rise will be much less because of frictional 
losses. 
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PROPRIETARY MATERIAL

5-60 A Pitot-static probe equipped with a water manometer is held parallel to air flow, and the differential 
height of the water column is measured. The flow velocity of air is to be determined. √ 

Assumptions 1The flow of air is steady, incompressible, and irrotational with negligible frictional effects 
(so that the Bernoulli equation is applicable). 2 The effect of air column on the pressure change is 
negligible because of its low density, and thus the air column in the manometer can be ignored.   

Properties  We take the density of water to be ρ = 1000 kg/m3. The density of air is given to be 1.25 kg/m3. 

Analysis We take point 1 on the side of the probe where the entrance is parallel to flow and is connected to 
the static arm of the Pitot-static probe, and point 2 at the tip of the probe where the entrance is normal to 
flow and is connected to the dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point 
and thus V2 = 0 and z1 =  z2, the application of the Bernoulli equation between points 1 and 2 gives 

             
air

PPV
g

P
g

V
g

Pz
g

V
g

Pz
g

V
g

P
ρρρρρ

)(2           
2

          
22

12
1

2
2

11
2

2
22

1

2
11 −

=→=+→++=++     (1) 

The pressure rise at the tip of the Pitot-static probe is simply the 
pressure change indicated by the differential water column of the 
manometer, 

ghPP water12   ρ=−       (2) 

Combining Eqs. (1) and (2) and substituting, the flow velocity is determined to be 

    m/s 33.8=== 3

23

air

water
1  kg/m25.1

m) 073.0)(m/s 81.9)( kg/m1000(22
ρ

ρ gh
V  

Discussion Note that flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by 
inserting the probe into the pipe or duct parallel to flow, and reading the differential height. Also note that 
this is the velocity at the location of the tube. Several readings at several locations in a cross-section may be 
required to determine the mean flow velocity. 
 
 

1
2 

Manometer 

Pitot 
tube 

7.3 cm 
Air 
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PROPRIETARY MATERIAL

5-61E A Pitot-static probe equipped with a differential pressure gage is used to measure the air velocity in 
a duct. For a given differential pressure reading, the flow velocity of air is to be determined. √ 

Assumptions The flow of air is steady, incompressible, and irrotational with negligible frictional effects (so 
that the Bernoulli equation is applicable).   

Properties  The gas constant of air is R = 0.3704 psia⋅ft3/lbm⋅R. 

Analysis We take point 1 on the side of the probe where the entrance is parallel to flow and is connected to 
the static arm of the Pitot-static probe, and point 2 at the tip of the probe where the entrance is normal to 
flow and is connected to the dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point 
and thus V2 = 0 and z1 =  z2, the application of the Bernoulli equation between points 1 and 2 gives 

             
ρρρρρ

)(2           
2

          
22

12
1

2
2

11
2

2
22

1

2
11 PPV

g
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g
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g
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g
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g
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where  

    3
3

lbm/ft 0683.0
)R 46070)(R/lbmftpsia 3704.0(

psia 4.13
=

+⋅⋅
==

RT
Pρ  

Substituting the given values, the flow velocity is determined to be 

    ft/s 143=






 ⋅








=

lbf 1
ft/slbm 2.32

 psi1
lbf/ft 144

lbm/ft 0683.0
) psi15.0(2 22

31V  

Discussion Note that flow velocity in a pipe or duct can be measured easily by a Pitot-static probe by 
inserting the probe into the pipe or duct parallel to flow, and reading the pressure differential. Also note 
that this is the velocity at the location of the tube. Several readings at several locations in a cross-section 
may be required to determine the mean flow velocity. 
 
 
 

∆P = 0.15 psi

70°F 
13.4 psia 

1
2 

Pitot 
tube 

Air 

. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution 
permitted only to teachers and educators for course preparation.  If you are a student using this Manual, you 
are using it without permission.   

5-37



Chapter 5  Mass, Bernoulli, and Energy Equations 
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5-62 In a power plant, water enters the nozzles of a hydraulic turbine at a specified pressure. The maximum 
velocity water can be accelerated to by the nozzles is to be determined.  √ 

Assumptions 1The flow of water is steady, incompressible, and irrotational with negligible frictional 
effects (so that the Bernoulli equation is applicable). 2 Water enters the nozzle with a low velocity. 

Properties  We take the density of water to be ρ = 1000 kg/m3.   

Analysis We take points 1 and 2 at the inlet and exit of the nozzle, respectively. Noting that V1 ≅ 0 and z1 =  
z2, the application of the Bernoulli equation between points 1 and 2 gives 

             
ρρρρρ
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22
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2
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11 atmatm PPV
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Substituting the given values, the nozzle exit velocity is determined to be 

m/s 34.6=






 ⋅







−
=

N 1
m/s kg1

 kPa1
N/m 1000

 kg/m1000
 kPa)100700(2 22

31V  

2
Turbine 
nozzzle 

V
100 kPa

700 kPa
1

Water 

Discussion This is the maximum nozzle exit velocity, and the actual 
velocity will be less because of friction between water and the walls 
of the nozzle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution 
permitted only to teachers and educators for course preparation.  If you are a student using this Manual, you 
are using it without permission.   

5-38


	Mechanical Energy and Pump Efficiency
	5-62 In a power plant, water enters the nozzles of a hydraulic turbine at a specified pressure. The maximum velocity water can be accelerated to by the nozzles is to be determined.  (

