Chapter 3 Pressure and Fluid Statics

Fluid Statics: Hydrostatic Forces on Plane and Curved Surfaces

3-53C The resultant hydrostatic force acting on a submerged surface is the resultant of the pressure forces
acting on the surface. The point of application of this resultant force is called the center of pressure.

3-54C Yes, because the magnitude of the resultant force acting on a plane surface of a completely
submerged body in a homogeneous fluid is equal to the product of the pressure Pc at the centroid of the
surface and the area 4 of the surface. The pressure at the centroid of the surface is P, = Py + pgh, where

hc is the vertical distance of the centroid from the free surface of the liquid.

3-55C There will be no change on the hydrostatic force acting on the top surface of this submerged
horizontal flat plate as a result of this rotation since the magnitude of the resultant force acting on a plane
surface of a completely submerged body in a homogeneous fluid is equal to the product of the pressure Pc
at the centroid of the surface and the area 4 of the surface.

3-56C Dams are built much thicker at the bottom because the pressure force increases with depth, and the
bottom part of dams are subjected to largest forces.

3-57C The horizontal component of the hydrostatic force acting on a curved surface is equal (in both
magnitude and the line of action) to the hydrostatic force acting on the vertical projection of the curved
surface.

3-58C The vertical component of the hydrostatic force acting on a curved surface is equal to the hydrostatic
force acting on the horizontal projection of the curved surface, plus (minus, if acting in the opposite
direction) the weight of the fluid block.

3-59C The resultant hydrostatic force acting on a circular surface always passes through the center of the
circle since the pressure forces are normal to the surface, and all lines normal to the surface of a circle pass
through the center of the circle. Thus the pressure forces form a concurrent force system at the center,
which can be reduced to a single equivalent force at that point. If the magnitudes of the horizontal and
vertical components of the resultant hydrostatic force are known, the tangent of the angle the resultant
hydrostatic force makes with the horizontal is tana = Fy, / F; .
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Chapter 3 Pressure and Fluid Statics

3-60 A car is submerged in water. The hydrostatic force on the door and its line of action are to be
determined for the cases of the car containing atmospheric air and the car is filled with water.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The door can be approximated as a vertical
rectangular plate. 3 The pressure in the car remains at atmospheric value since there is no water leaking in,
and thus no compression of the air inside. Therefore, we can ignore the atmospheric pressure in
calculations since it acts on both sides of the door.

Properties We take the density of lake water to be 1000 kg/m’ throughout.

Analysis (a) When the car is well-sealed and thus the pressure inside the car is the atmospheric pressure,
the average pressure on the outer surface of the door is the pressure at the centroid (midpoint) of the
surface, and is determined to be

Pave=PC =pg'hc =pg(S+b/2)

1kN
= (1000 kg/m*)(9.81m/s? )8 +1.1/2m) ————M
( gmX X )[1000kg-m/s2J

— 83.88 kKN/m> L
Then the resultant hydrostatic force on the door becomes

Fr=P,,A=(83.88kN/m*)(0.9 mx1.1m)=83.0 kN

The pressure center is directly under the midpoint of the plate, and its
distance from the surface of the lake is determined to be

b2 1.1 1.12 Door, 1.1 mx 0.9 m

Yp =5+2+—= —+————=8.56m

2 12(s+b/2) 2 12(8+1.1/2)

(b) When the car is filled with water, the net force normal to the surface of the door is zero since the
pressure on both sides of the door will be the same.

Discussion Note that it is impossible for a person to open the door of the car when it is filled with
atmospheric air. But it takes no effort to open the door when car is filled with water.
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Chapter 3 Pressure and Fluid Statics

3-61E The height of a water reservoir is controlled by a cylindrical gate hinged to the reservoir. The
hydrostatic force on the cylinder and the weight of the cylinder per ft length are to be determined. \ Feb05

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus
it can be ignored in calculations for convenience.

Properties We take the density of water to be 62.4 Ibm/ft’ throughout.

Analysis (a) We consider the free body diagram of the liquid block enclosed by the circular surface of the
cylinder and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and
horizontal plane surfaces as well as the weight of the liquid block per ft length of the cylinder are:
Horizontal force on vertical surface:

Fy=F. =P, A= pghA=pg(s+R/2)A

ave

= (62.4 1bm/ft>)(32.2 ft/s?)(13+2/ 2 f)(2 ft x 1 ft)($J
32.2 Ibm- ft/s>

=1747 Ibf
Vertical force on horizontal surface (upward): A
s=13ft
Fy = PaveA = pghCA = pghbottomA —X
= (62.4 Ibm/ft>)(32.2 ft/s > )(15 ft)(2 ft x 1 ft)($J s
32.2 Ibm-ft/s? =21t
=18721Ibf Y

Weight of fluid block per ft length (downward).

W =mg = pgV = pg(R* —nR* | 4)(1t) = pgR* (1- 7 / 4)(1ft)

11bf
= (62.4 1bm/ft> )(32.2 ft/s)(2 ft) > (1- m/4)(1 ft [—j
( X Y2 X )32.2lbm~ft/s2

=54 1bf
Therefore, the net upward vertical force is

Fy =F,-W =1872-54 =1818 Ibf

Then the magnitude and direction of the hydrostatic force acting on the cylindrical surface become

Fp =\F2 +F} =+1747% +1818> =2521 Ibf

Fy _18181bf
F,; 17471bf

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 2521 Ibf per ft length of the
cylinder, and its line of action passes through the center of the cylinder making an angle 46.1° upwards
from the horizontal.

tan @ = =1.041 —» 6=46.1°

(b) When the water level is 15-ft high, the gate opens and the reaction force at the bottom of the cylinder
becomes zero. Then the forces other than those at the hinge acting on the cylinder are its weight, acting
through the center, and the hydrostatic force exerted by water. Taking a moment about the point 4 where
the hinge is and equating it to zero gives

FrRsin0-W,,R=0 — W,

oy = Fgsind = (2521 1bf)sin46.1° =1817 Ibf (per ft)

Discussion The weight of the cylinder per ft length is determined to be 1817 1bf, which corresponds to a
mass of 1817 Ibm, and to a density of 145 Ibm/ft’ for the material of the cylinder.
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3-62 An above the ground swimming pool is filled with water. The hydrostatic force on each wall and the
distance of the line of action from the ground are to be determined, and the effect of doubling the wall
height on the hydrostatic force is to be assessed.

Assumptions The atmospheric pressure acts on both sides of the wall of the pool, and thus it can be ignored
in calculations for convenience.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be A

Pave:PC :@hc Zpg(h/Z)

2h/3
F h=15m
= (1000 kg/m*)(9.81m/s*)(1.5/2 m) N > - i
lkg-m/s
h/3

=7357.5 N/m?

Then the resultant hydrostatic force on each wall becomes
Fg =P, ,A=(7357.5N/m?)(4 mx1.5m) = 44,145 N = 44.1 kN

The line of action of the force passes through the pressure center, which is 24/3 from the free surface and
h/3 from the bottom of the pool. Therefore, the distance of the line of action from the ground is

yp= % = % =0.50 m (from the bottom)

If the height of the walls of the pool is doubled, the hydrostatic force quadruples since
Fr = pghe A= pg(h!2)(hxw)= pgwh?* /2

and thus the hydrostatic force is proportional to the square of the wall height, 4.
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Chapter 3 Pressure and Fluid Statics
3-63E A dam is filled to capacity. The total hydrostatic force on the dam, and the pressures at the top and
the bottom are to be determined.

Assumptions The atmospheric pressure acts on both sides of the dam, and thus it can be ignored in
calculations for convenience.

Properties We take the density of water to be 62.4 Ibm/ft’ throughout.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be
2h/3
Puve = ,Dghc = pg(h / 2) FR h=200 ft

11bf j -+

= (62.4 Ibm/ft>)(32.2 ft/s2)(200/ 2 ft)(—z
32.21bm-ft/s h/3

= 6240 Ibf/ft>

Then the resultant hydrostatic force acting on the dam becomes
Fy = P,,, A= (6240 Ibf/ft*)(200 ft x 1200 ft) = 1.50 x1 0 Ibf
Resultant force per unit area is pressure, and its value at the top and the bottom of the dam becomes

Py = pghyy, = 0 IbFIE?

11bf

— = 3 2
Poottom = PZhvotiom = (62.4Tom/ft")(32.2 ft/s™)(200 ﬁ)(m

J: 12,480 Ibf/ft>
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3-64 A room in the lower level of a cruise ship is considered. The hydrostatic force acting on the window
and the pressure center are to be determined.

Assumptions The atmospheric pressure acts on both sides of the window, and thus it can be ignored in
calculations for convenience.

Properties The specific gravity of sea water is given to be 1.025, and thus its density is 1025 kg/m”.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be _

A
3 5 IN
P,.=P-=pgh, =(1025kg/m”)(9.81m/s”)(5m) —
1kg-m/s Sm
=50,276 N/m*
Then the resultant hydrostatic force on each wall becomes 0
F,
Fr=P,,A=P, [zD* /4] = (50,276 N/m?)[z(0.3m)? /4] = 3554 N . ¢ p-03m

The line of action of the force passes through the pressure center,
whose vertical distance from the free surface is determined from

Loc R /4 R? (0.15m)?
= =yc+ =5+
4y, 4(5m)

=5.0011 m

Yp=Yc+t =Yc

yeA Yc R
Discussion Note that for small surfaces deep in a liquid, the pressure center nearly coincides with the
centroid of the surface.
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3-65 The cross-section of a dam is a quarter-circle. The hydrostatic force on the dam and its line of action
are to be determined.

Assumptions The atmospheric pressure acts on both sides of the dam, and thus it can be ignored in
calculations for convenience.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the dam
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane
surfaces as well as the weight of the liquid block are:

Horizontal force on vertical surface:

Fy =F, =P,,A=pghcA=pg(R/2)4

ave

= (1000 kg/m> )(9.81 m/s?)(10 /2 m)(10 m x 100 m) 1—N2
1kg-m/s y=0
=4.905%x10" N
) p—
Vertical force on horizontal surface is zero since it coincides with r —> R=10m
the free surface of water. The weight of fluid block per m length is =
g p g —_—
Fy =W = pgV = pg[wxaR? | 4] —>
—
3 2 2 1IN 174
= (1000 kg/m~)(9.81 m/s*)[(100 m)7(10 m)~ /4] ———
1kg-m/s

=7.705x10" N

Then the magnitude and direction of the hydrostatic force acting on the surface of the dam become

Fp =yF2 +F} =(4.905x10" N)? +(7.705x107 N)> =9.134x107 N

Fy _7705x10" N

tan @ = = >
Fy  4905x10" N

=1571 —» 6=575°

Therefore, the line of action of the hydrostatic force passes through the center of the curvature of the dam,
making 57.5° downwards from the horizontal.
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3-66 A rectangular plate hinged about a horizontal axis along its upper edge blocks a fresh water channel.
The plate is restrained from opening by a fixed ridge at a point B. The force exerted to the plate by the ridge
is to be determined. VEES

Assumptions The atmospheric pressure acts on both sides of the plate, and thus it can be ignored in
calculations for convenience.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be

Pave :PC :pghC :pg(h/z)
1kN

= (1000 kg/m*)(9.81m/s?)(4/2 m)| —————
s 1000 kg - m/s>

J: 19.62 kN/m?

Then the resultant hydrostatic force on each wall becomes
Fr=P,,A=(19.62kN/m?)(4 mx5m)=392 kN

The line of action of the force passes through the pressure center,
which is 24/3 from the free surface,

_2h_2x(4m)
3

Yp =2.667m

Taking the moment about point 4 and setting it equal to zero gives

ZMA:O - FR(S+yP):FridgeAB

Solving for Fiqe and substituting, the reaction force is determined to be

g = e g - (1+2667)m 357 kN) = 288 kN
4B 5m
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3-67 Problem 3-66 is reconsidered. The effect of water depth on the force exerted on the plate by the ridge
as the water depth varies from 0 to 5 m in increments of 0.5 m is to be investigated.

g=9.81 "m/s2"
rho=1000 "kg/m3"
S=1 llmll

w=5"m"

A=w*h
P_ave=rho*g*h/2000 "kPa"
F_R=P_ave*A "kN"
y_p=2*h/3
F_ridge=(s+y_p)*F_R/(s+h)

Dept Pavea FR yp Fridge
h, m kPa kN m kN
0.0 0 0.0 0.00 0
0.5 2.453 6.1 0.33 5
1.0 4.905 24.5 0.67 20
1.5 7.358 55.2 1.00 44
2.0 9.81 98.1 1.33 76
2.5 12.26 1533 1.67 117
3.0 14.72 220.7 2.00 166
35 17.17 300.4 2.33 223
4.0 19.62 3924 2.67 288
4.5 22.07 496.6 3.00 361
5.0 24.53 613.1 3.33 443
450
400 /
350
300} y

Z 200 A
g | e
2 150 //
L 100
50 /O/(f/o«/
O L
0 1 2 3 4 5
h, m
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Chapter 3 Pressure and Fluid Statics

3-68E The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point A. The
required weight ¥ for the gate to open at a specified water height is to be determined. VEES

Assumptions 1 The atmospheric pressure acts on both sides of the gate, and thus it can be ignored in
calculations for convenience. 2 The weight of the gate is negligible.

Properties We take the density of water to be 62.4 Ibm/ft’ throughout.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be

Puve =%hc =pg(h/2)

= (62.41bmV/ft>)(32.2 ft/s2)(12/2 ft)($j
32.21bm-ft/s?

=374.4 bf/ft>

Then the resultant hydrostatic force acting on the dam becomes

Fg =P, A=(37441bf/ft>)(12 ft x5 ft) = 22,464 Ibf

The line of action of the force passes through the pressure center,
which is 24/3 from the free surface,

_2h 2x(12f9)
3 3

Yp =81t

Taking the moment about point 4 and setting it equal to zero gives
DM, =0 > Fp(s+yp)=WAB

Solving for W and substituting, the required weight is determined to be

w3t g BB o) 4641bf) = 30,900 Ibf
4B 81t

Discussion Note that the required weight is inversely proportional to the distance of the weight from the
hinge.
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3-69E The flow of water from a reservoir is controlled by an L-shaped gate hinged at a point A. The
required weight ¥ for the gate to open at a specified water height is to be determined. VEES

Assumptions 1 The atmospheric pressure acts on both sides of the gate, and thus it can be ignored in
calculations for convenience. 2 The weight of the gate is negligible.

Properties We take the density of water to be 62.4 Ibm/ft’ throughout.

Analysis The average pressure on a surface is the pressure at the
centroid (midpoint) of the surface, and is determined to be

Puve =%hc =pg(h/2)

= (62.41bm/ft>)(32.2 ft/s>)(8/2 ft)($j
32.2 1bm-ft/s>

=249.6 Ibf/ft>

Then the resultant hydrostatic force acting on the dam becomes

Fg =P, A =(249.6 Ibf/ft>)(8 ft x5 ft) = 9984 Ibf

The line of action of the force passes through the pressure center,
which is 24/3 from the free surface,

_2h_2x(8fY)
3

yp = 53331t

Taking the moment about point 4 and setting it equal to zero gives
DM, =0 > Fp(s+yp)=WAB

Solving for W and substituting, the required weight is determined to be

w=3tIe g TSI go0r by~ 15,300 Ibf
4B 81t

Discussion Note that the required weight is inversely proportional to the distance of the weight from the
hinge.
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3-70 Two parts of a water trough of semi-circular cross-section are held together by cables placed along the
length of the trough. The tension T in each cable when the trough is full is to be determined.

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in
calculations for convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is quarter-circle.
The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of the
liquid block are:

Horizontal force on vertical surface:

Fy =F, =P, ,A=pghcA=pg(R/2)4

ave

— (1000 kg/m?)(9.81m/s?)(0.5/2 m)(0.5 mx 3 m) —
1kg-m/s
~3679N

The vertical force on the horizontal surface is zero, since it coincides
with the free surface of water. The weight of fluid block per 3-m length is

Fy =W = pgV = pg[wxR* | 4]
3 2 2 IN
= (1000 kg/m~)(9.81m/s*)[(3m)7(0.5m)" /4] ————
lkg-m/s
=5779N

Then the magnitude and direction of the hydrostatic force acting on the surface of the 3-m long section of
the trough become

Fy =+[F2 + F} =y(3679N)? + (5779 N)* = 6851N
Fy STION

= =1571 —> 0=575°
F, 3679N

tan @ =

Therefore, the line of action passes through the center of the curvature of the trough, making 57.5°
downwards from the horizontal. Taking the moment about point 4 where the two parts are hinged and
setting it equal to zero gives

D M,;=0 >  FpRsin(90-57.5°=TR
Solving for T and substituting, the tension in the cable is determined to be
T = F sin(90-57.5)° = (6851 N)sin(90 - 57.5)° = 3681 N

Discussion This problem can also be solved without finding F by finding the lines of action of the
horizontal hydrostatic force and the weight.
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3-71 Two parts of a water trough of triangular cross-section are held together by cables placed along the
length of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in
calculations for convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The
water height /4 at the midsection of the trough and width of the free surface are

h = Lsin @ =(0.75m)sin45° = 0.530 m
b=Lcosd=(0.75m)cos45°=0.530 m

The hydrostatic forces acting on the vertical and horizontal
plane surfaces as well as the weight of the liquid block are
determined as follows: Fy

Horizontal force on vertical surface:

FH :Fx :PaveA:pghCA:pg(h/z)A

= (1000 kg/m>)(9.81m/s?)(0.530/ 2 m)(0.530 m x 6 m) Lz
lkg-m/s

=8267N

The vertical force on the horizontal surface is zero since it coincides with
the free surface of water. The weight of fluid block per 3-m length is

Fy =W = pgV = pg[wxbh/2]
= (1000 kg/m>)(9.81 m/s?)[(6 m)(0.530 m)(0.530 m)/2] _IN
1kg-m/s?
=8267N
The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side.
Taking the moment about point A where the two parts are hinged and setting it equal to zero gives

dDM,=0 > W§+FH§=Th

Solving for T and substituting, and noting that # = b, the tension in the cable is determined to be

T Fy+W _ (8267 +8267)N
3

=5511N
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3-72 Two parts of a water trough of triangular cross-section are held together by cables placed along the
length of the trough. The tension T in each cable when the trough is filled to the rim is to be determined.

Assumptions 1 The atmospheric pressure acts on both sides of the trough wall, and thus it can be ignored in
calculations for convenience. 2 The weight of the trough is negligible.

Properties We take the density of water to be 1000 kg/m’ throughout.

Analysis To expose the cable tension, we consider half of the trough whose cross-section is triangular. The
water height is given to be & = 0.4 m at the midsection of the trough, which is equivalent to the width of the
free surface b since tan 45°=b/h = 1.

The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of
the liquid block are determined as follows:

Horizontal force on vertical surface:

Fy =F, =P, A= pghoA=pg(h/2)4

ave

= (1000 kg/m>)(9.81m/s?)(0.4 /2 m)(0.4 m x 3 m) _IN
1kg-m/s*

=2354N

The vertical force on the horizontal surface is zero since it coincides with
the free surface of water. The weight of fluid block per 3-m length is

Fy =W = pgV = pg[wxbh/2]

= (1000 kg/m*)(9.81 m/s*)[(3 m)(0.4 m)(0.4 m)/z](LZJ
1kg-m/s

=2354N
The distance of the centroid of a triangle from a side is 1/3 of the height of the triangle for that side.
Taking the moment about point 4 where the two parts are hinged and setting it equal to zero gives

dDM,=0 > W§+FH§=Th

Solving for T and substituting, and noting that 4 = b, the tension in the cable is determined to be

oo FutW _(2354+2354)N
===

=1569N
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3-73 A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height
at which the blocks will start sliding, and the blocks will tip over are to be determined.

Assumptions The atmospheric pressure acts on both sides of the wall, and thus it can be ignored in
calculations for convenience.

Properties The density is given to be 1800 kg/m’ for the mud, and 2700 kg/m® for concrete blocks.

Analysis (a) The weight of the concrete wall per unit length (L = 1 m) and the friction force between the
wall and the ground are

Witoa = pgV = (2700 kg/m?)(9.81m/s2)[0.2x 0.8x1m*) IN — |=4238N
1kg-m/s
Friction = MWpoae = 0.3(4238 N) =1271N (=02m
A
The hydrostatic force exerted by the mud to the wall is
FH:Fx:PaveA:pghCA:pg(h/z)A —A_
3 2 1N 0.8 m
= (1800 kg/m~)(9.81m/s")(h/2)(1xh) ——— h
lkg-m/s
F
=88294* N ”
w
Setting the hydrostatic and friction forces equal to each other gives Fiction . v
Fy = Friion  — 882942 =1271 — /#=0.38 m 4

(b) The line of action of the hydrostatic force passes through the pressure center, which is 2/4/3 from the
free surface. The line of action of the weight of the wall passes through the midplane of the wall. Taking
the moment about point 4 and setting it equal to zero gives

ZMA =0 o Wy (t/2)=F(h/3) —» Wy (t/2)=88291°/3
Solving for / and substituting, the mud height for tip over is determined to be

NE ”3_(3><4238><0.2
2% 8829 2x 8829

1/3
) =0.52m

Discussion Note that the concrete wall will slide before tipping. Therefore, sliding is more critical than
tipping in this case.
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3-74 A retaining wall against mud slide is to be constructed by rectangular concrete blocks. The mud height
at which the blocks will start sliding, and the blocks will tip over are to be determined.

Assumptions The atmospheric pressure acts on both sides of the wall, and thus it can be ignored in
calculations for convenience.

Properties The density is given to be 1800 kg/m’ for the mud, and 2700 kg/m® for concrete blocks.

Analysis (a) The weight of the concrete wall per unit length (L = 1 m) and the friction force between the
wall and the ground are

Wioa = pgV = (2700 kg/m?)(9.81m/s2)[0.4x0.8x1m?) IN — |=8476N
1kg-m/s /=04 m
Ffriction = /’leIOCk = 03(8476 N) = 2543 N A
The hydrostatic force exerted by the mud to the wall is
Fy=F =P, A= pghcA= pg(h/2)4 A
0.8 m
3 2 IN A
= (1800 kg/m~)(9.81m/s")(h/2)(1xh) ———
lkg-m/s F
H
=88294* N w
Setting the hydrostatic and friction forces equal to each other gives Fiiction Y v
> <

Fy =Frion  — 8829h*=2543 — h=0.54 m

(b) The line of action of the hydrostatic force passes through the pressure center, which is 2/4/3 from the
free surface. The line of action of the weight of the wall passes through the midplane of the wall. Taking
the moment about point 4 and setting it equal to zero gives

ZMA =0 o Wy (t/2)=F(h/3) —» Wy (t/2)=88291°/3
Solving for / and substituting, the mud height for tip over is determined to be

NE ”3_(3><8476><0.3
2x8829 2% 8829

1/3
j =0.76 m

Discussion Note that the concrete wall will slide before tipping. Therefore, sliding is more critical than
tipping in this case.

3-50
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution
permitted only to teachers and educators for course preparation. If you are a student using this Manual, you
are using it without permission.




Chapter 3 Pressure and Fluid Statics

3-75 A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B
where the gate is pressed by a spring. The minimum spring force required to keep the gate closed when the
water level rises to A at the upper edge of the gate is to be determined.

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus
it can be ignored in calculations for convenience. 3 The weight of the gate is negligible.

Properties We take the density of water to be 1000 kg/m® throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane
surfaces as well as the weight of the liquid block are determined as follows:

Horizontal force on vertical surface:
Fy=F. =P, A= pghcA=pg(R/2)A4

ave

— (1000 kg/m*)(9.81 m/s>)(3/2 m)(4 m x 3 m) “‘—Nz
1000 kg - m/s

=176.6 kN
Vertical force on horizontal surface (upward):
Fy = PaveA = pghCA = pghbottomA

= (1000 kg/m>)(9.81m/s? )(3 m)(4 m x 3 m) #
1000 kg - m/s

=353.2kN
The weight of fluid block per 4-m length (downwards):

W = pgV = pg[wxaR> /4]
= (1000 kg/m*>)(9.81 m/s)[(4 m)z (3 m)? /4] N
' 1000 kg - m/s>

=277.4kN
Therefore, the net upward vertical force is

Fy =F,-W =353.2-277.4=75.8kN

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-
circular section of the gate become

Fr =y F2 +F2 ={(176.6kKN)? +(75.8kN)> =192.2 kN
Fy  75.8kN

=202 0429 - 0=232°
F,;  176.6kN

tan @ =

Therefore, the magnitude of the hydrostatic force acting on the gate is 192.2 kN, and its line of action
passes through the center of the quarter-circular gate making an angle 23.2° upwards from the horizontal.

The minimum spring force needed is determined by taking a moment about the point 4 where the
hinge is, and setting it equal to zero,

DM, =0 > FgRsin(90-0)~F; R=0

pring
Solving for Fyying and substituting, the spring force is determined to be

Fypiny = Frsin(90-6) = (192.2 kN)sin(90° — 23.2°) =177 kN

spring
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Chapter 3 Pressure and Fluid Statics

3-76 A quarter-circular gate hinged about its upper edge controls the flow of water over the ledge at B
where the gate is pressed by a spring. The minimum spring force required to keep the gate closed when the
water level rises to A at the upper edge of the gate is to be determined.

Assumptions 1 The hinge is frictionless. 2 The atmospheric pressure acts on both sides of the gate, and thus
it can be ignored in calculations for convenience. 3 The weight of the gate is negligible.

Properties We take the density of water to be 1000 kg/m® throughout.

Analysis We consider the free body diagram of the liquid block enclosed by the circular surface of the gate
and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane
surfaces as well as the weight of the liquid block are determined as follows:
Horizontal force on vertical surface:

Fy=F. =P, A= pghcA=pg(R/2)4

ave

— (1000 kg/m?)(0.81m/s?)(4/ 2 m)(4m x4 m) — N
1000 kg - m/s

=313.9kN
Vertical force on horizontal surface (upward):
Fy = PaveA = pghCA = pghbottomA

= (1000 kg/m>)(9.81m/s? )(4 m)(4 m x 4 m) #
1000 kg - m/s

=627.8kN
The weight of fluid block per 4-m length (downwards):

W = pgV = pglwxaR> /4]

1kN
= (1000 kg/m*)(9.81m/s*)[(4 m)z(4 m)* /4] —————
( g/m~)( )[(4m)7z(4m)~/4] 1000 kg s
=493.1kN
Therefore, the net upward vertical force is

Fy =F,—W =627.8-493.1=134.7kN

Then the magnitude and direction of the hydrostatic force acting on the surface of the 4-m long quarter-
circular section of the gate become

Fr=yF2 +F2 =(313.9kN)> + (134.7kN)? =341.6 kN
Fy  134.7kN

= 0429 - #=232°
F, 313.9kN

tan @ =

Therefore, the magnitude of the hydrostatic force acting on the gate is 341.6 kN, and its line of action
passes through the center of the quarter-circular gate making an angle 23.2° upwards from the horizontal.

The minimum spring force needed is determined by taking a moment about the point 4 where the
hinge is, and setting it equal to zero,
R=0

pring

D M,=0 > FgRsin(90-0)-F,

Solving for Fyying and substituting, the spring force is determined to be

Fying = Frsin(90-0) = (341.6 kN)sin(90° — 23.2°) = 314.0 kN

spring

3-52
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution
permitted only to teachers and educators for course preparation. If you are a student using this Manual, you
are using it without permission.




Chapter 3 Pressure and Fluid Statics

Buoyancy

3-77C The upward force a fluid exerts on an immersed body is called the buoyant force. The buoyant force
is caused by the increase of pressure in a fluid with depth. The magnitude of the buoyant force acting on a
submerged body whose volume is V/is expressed as Fz = p,gV . The direction of the buoyant force is

upwards, and its line of action passes through the centroid of the displaced volume.

3-78C The magnitude of the buoyant force acting on a submerged body whose volume is Vis expressed as
Fp=p,gV, which is independent of depth. Therefore, the buoyant forces acting on two identical

spherical balls submerged in water at different depths will be the same.

3-79C The magnitude of the buoyant force acting on a submerged body whose volume is Vis expressed as
Fp =p,gV . which is independent of the density of the body ( pis the fluid density). Therefore, the

buoyant forces acting on the 5-cm diameter aluminum and iron balls submerged in water will be the same.

3-80C The magnitude of the buoyant force acting on a submerged body whose volume is /is expressed as
Fp =p,gV , which is independent of the shape of the body. Therefore, the buoyant forces acting on the

cube and sphere made of copper submerged in water will be the same since they have the same volume.

3-81C A submerged body whose center of gravity G is above the center of buoyancy B, which is the
centroid of the displaced volume, is unstable. But a floating body may still be stable when G is above B
since the centroid of the displaced volume shifts to the side to a point B’ during a rotational disturbance
while the center of gravity G of the body remains unchanged. If the point B’ is sufficiently far, these two
forces create a restoring moment, and return the body to the original position.
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Chapter 3 Pressure and Fluid Statics

3-82 The density of a liquid is to be determined by a hydrometer by establishing division marks in water
and in the liquid, and measuring the distance between these marks.

Properties We take the density of pure water to be 1000 kg/m’.

Analysis A hydrometer floating in water is in static equilibrium, and the buoyant force Fj exerted by the
liquid must always be equal to the weight ¥ of the hydrometer, Fp = W.

Fp = pgV, = pghA, —-p mark for water
_r

where £ is the height of the submerged portion of the hydrometer

GS cm
and A, is the cross-sectional area which is constant. {_

In pure water: W=p,gh,A, Liquid

In the llquld W= p]iquidghliquidAc
10 cm

Setting the relations above equal to each other (since both equal the

lw
weight of the hydrometer) gives v
pwgh,A. = pliquidghliquidAc
B

Solving for the liquid density and substituting,

h ater 10cm 3 3
w =M (1000 kg/m?) = 1053 kg/m
s " T (10— 0.5)em (kg™ g

Pliquid =

Discussion Note that for a given cylindrical hydrometer, the product of the fluid density and the height of
the submerged portion of the hydrometer is constant in any fluid.
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Chapter 3 Pressure and Fluid Statics
3-83E A concrete block is lowered into the sea. The tension in the rope is to be determined before and after

the block is immersed in water.

Assumptions 1 The buoyancy force in air is negligible. 2 The weight of the rope is negligible.

Properties The density of steel block is given to be 494 Tbm/ft’.

Analysis (a) The forces acting on the concrete block in air are its downward weight and the upward pull
action (tension) by the rope. These two forces must balance each other, and thus the tension in the rope

must be equal to the weight of the block:

V =4R> /3=47(1.5f)°/3=14.137 ft*

FT =W= pconcretegu
11bf

= (494 Ibm/ft> )(32.2 ft/s?)(14.137 ft* )(—
32.2 1bm-ft/s?

J =6984 Ibf

(b) When the block is immersed in water, there is the additional force
of buoyancy acting upwards. The force balance in this case gives

11bf

Fy=p gV =(62.41bm/ft>)(32.2 ft/s* )(14.137 ft3)(—
32.21bm-ft/s?

j: 882 Ibf
Fr ater =W —F = 6984882 =6102 Ibf

Discussion Note that the weight of the concrete block and thus the
tension of the rope decreases by (6984 — 6102)/6984 = 12.6% in water.
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Chapter 3 Pressure and Fluid Statics

3-84 An irregularly shaped body is weighed in air and then in water with a spring scale. The volume and
the average density of the body are to be determined.

Properties We take the density of water to be 1000 kg/m’.
Assumptions 1 The buoyancy force in air is negligible. 2 The body is completely submerged in water.
Analysis The mass of the body is

Water :
W, 1ke- 2 F Air
m = A 7200 N ( g m/s J —733.9 kg T B

g 9.81m/s2 IN

The difference between the weights in air and in water is due to
the buoyancy force in water,

Fy =Wy, —W,

air water

=7200-4790 =2410N W = 4790 N W.i=6800 N
Noting that Fp = per &V , the volume of the body is determined to be

Fy 2410N

= = =0.2457 m®
Puaer€ (1000 kg/m*)(9.81m/s?)

v

Then the density of the body becomes

m_ 733.9kg

=—= =2987 kg/m®
P T 02457 m’ g

Discussion The volume of the body can also be measured by observing the change in the volume of the
container when the body is dropped in it (assuming the body is not porous).
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Chapter 3 Pressure and Fluid Statics

3-85 The height of the portion of a cubic ice block that extends above the water surface is measured. The
height of the ice block below the surface is to be determined.

Assumptions 1 The buoyancy force in air is negligible. 2 The top surface of the ice block is parallel to the
surface of the sea.

Properties The specific gravities of ice and seawater are given to be 0.92 and 1.025, respectively, and thus
the corresponding densities are 920 kg/m® and 1025 kg/m’.

Analysis The weight of a body floating in a fluid is equal to the buoyant force acting on it (a consequence
of vertical force balance from static equilibrium). Therefore, in this case the average density of the body
must be equal to the density of the fluid since

W=F B
A
Phbody thotal = Pmid & Vsubmerged Ice block Y 10 em
A
Vsubmerged _ P body A
- w

Viotal Prluid

The cross-sectional of a cube is constant, and thus the “volume
ratio” can be replaced by “height ratio”. Then,

hsubmerged _ pbody N h _ Pice N h _ 0.92
Mow P h+0.10 Py h+0.10  1.025

where / is the height of the ice block below the surface. Solving for / gives
h =0.876 m=87.6 cm

Discussion Note that the 0.92/1.025 = 90% of the volume of an ice block remains under water. For
symmetrical ice blocks this also represents the fraction of height that remains under water.
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Chapter 3 Pressure and Fluid Statics

3-86 A man dives into a lake and tries to lift a large rock. The force that the man needs to apply to lift it
from the bottom of the lake is to be determined.

Assumptions 1 The rock is ¢ completely submerged in water. 2 The buoyancy force in air is negligible.

Properties The density of granite rock is given to be 2700 kg/m’. We take the density of water to be 1000
kg/m’.

Analysis The weight and volume of the rock are

1
W =mg = (170 kg)(9.81m/s?) —N2 =1668N
lkg-m/s
170k
_m_ ;53 —0.06296 m> Water
P 2700kg/m 5

The buoyancy force acting on the rock is

Fp = Pyaer &Y
water W Fnel =W_ FB

= (1000 kg/m*)(9.81m/s*)(0.06296 m* )( J =618N

lkg-m/s2

The weight of a body submerged in water is equal to the weigh of
the body in air minus the buoyancy force,

W, = —Fz =1079-618=461 N

in water in air

Discussion This force corresponds to a mass of
- Winwater 461N IN
g 9.81m/s> lkg-m/s2

) =47.0kg

Therefore, a person who can lift 47 kg on earth can lift this rock in water.
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Chapter 3 Pressure and Fluid Statics
3-87 An irregularly shaped crown is weighed in air and then in water with a spring scale. It is to be

determined if the crown is made of pure gold.

Assumptions 1 The buoyancy force in air is negligible. 2 The crown is completely submerged in water.

Properties We take the density of water to be 1000 kg/m’. The density of gold is given to be 19300 kg/m”.

Analysis The mass of the crown is

B IN

Wy 314N [1kg-m/s’
g  9.81m/s?

]:3.20 kg

The difference between the weights in air and in water is due to
the buoyancy force in water, and thus
Fy =W, =314-289=250N

air

-W.

water

Noting that F = p &V , the volume of the crown is determined to be

Fp 250N

= = =2.548x10"* m?
Puwaer& (1000 kg/m>)(9.81m/s?)

v

Then the density of the crown becomes

20k
V  2548x10* m?

Water

F B Air
vAg v A g Crown,
< > < > m V
S rA a2
Water = 2.95 kgf Weir = 3.20 kgf

which is considerably less than the density of gold. Therefore, the crown is NOT made of pure gold.

Discussion This problem can also be solved without doing any under-water weighing as follows: We
would weigh a bucket half-filled with water, and drop the crown into it. After marking the new water level,
we would take the crown out, and add water to the bucket until the water level rises to the mark. We would
weigh the bucket again. Dividing the weight difference by the density of water and g will give the volume
of the crown. Knowing both the weight and the volume of the crown, the density can easily be determined.
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Chapter 3 Pressure and Fluid Statics

3-88 The average density of a person is determined by weighing the person in air and then in water. A
relation is to be obtained for the volume fraction of body fat in terms of densities.

Assumptions 1 The buoyancy force in air is negligible. 2 The body is considered to consist of fat and
muscle only. 3 The body is completely submerged in water, and the air volume in the lungs is negligible.

Analysis The difference between the weights of the person in air
and in water is due to the buoyancy force in water. Therefore,
F B~ Wair -w

water

- pwatergv = Wair -w

water

Knowing the weights and the density of water, the relation above gives
the volume of the person. Then the average density of the person can be
determined from

m Wair / g

Pave :7: v

Under assumption #2, the total mass of a person is equal to the sum of the masses of the fat and muscle
tissues, and the total volume of a person is equal to the sum of the volumes of the fat and muscle tissues.
The volume fraction of body fat is the ratio of the fat volume to the total volume of the person. Therefore,

V=V, +V, V=>1-xp )V

m=mgeg +m

where Vp =xpV and V

uscle uscle — *muscle

muscle

Noting that mass is density times volume, the last relation can be written as Air
Pave V= Prtat Vfat * Prmuscle Vmuscle
pave(/ = pfatxfat(/ + Pmuscle (1 — Xfat )V

Canceling the ¢/and solving for x, gives the desired relation,

_ Pmuscle ~ Pave
Xt =
Pmuscle ~ Prtat

Discussion Weighing a person in water in order to determine its
volume is not practical. A more practical way is to use a large W ater
container, and measuring the change in volume when the person is

completely submerged in it.
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Chapter 3 Pressure and Fluid Statics

3-89 The volume of the hull of a boat is given. The amounts of load the boat can carry in a lake and in the
sea are to be determined.

Assumptions 1 The dynamic effects of the waves are disregarded. 2 The buoyancy force in air is
negligible.

Properties The density of sea water is given to be 1.03x1000 = 1030 kg/m’. We take the density of water to
be 1000 kg/m’.

Analysis The weight of the unloaded boat is

1kN

Wow =mg = (8560kg)(9.81m/s? )| ——————
1000 kg - m/s

J =84.0kN

The buoyancy force becomes a maximum when the entire hull of the
boat is submerged in water, and is determined to be

1kN
Fppi. = ¥ = (1000 kg/m>)(9.81m/s?)(150 m®) —————— [=1472kN
Blake = Plake& g 1000 kg.m/sz
Fa o = PeagV = (1030 kg/m>)(9.81m/s?)(150m*) _ N | ysi6kn
Brsea = Fsea ' 1000 kg - m/s*

The total weight of a floating boat (load + boat itself) is equal to
the buoyancy force. Therefore, the weight of the maximum load is

Wioad.lake = Fp>lake—Wy .. =1472 -84 =1388 kN
Wicad.sea = Fsea —Whoat =1516—84 =1432kN

The corresponding masses of load are

W, 1000 kg - m/s>
Mngaae = 222k~ 18I © T2 1= 141,500 ke
’ g 9.81m/s 1kN
w, 1000 kg - m/s?
mload sea - load,lsea = 1432 kI\Iz g S = 146-0 kg
’ g 9.81m/s 1kN

Discussion Note that this boat can carry 4500 kg more load in the sea than it can in fresh water. The fully-
loaded boats in sea water should expect to sink into water deeper when they enter fresh water such a river
where the port may be.
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Chapter 3 Pressure and Fluid Statics

Fluids in Rigid Body Motion

3-90C A moving body of fluid can be treated as a rigid body when there are no shear stresses (i.e., no
motion between fluid layers relative to each other) in the fluid body.

3-91C A glass of water is considered. The water pressure at the bottom surface will be the same since the
acceleration for all four cases is zero.

3-92C The pressure at the bottom surface is constant when the glass is stationary. For a glass moving on a
horizontal plane with constant acceleration, water will collect at the back but the water depth will remain
constant at the center. Therefore, the pressure at the midpoint will be the same for both glasses. But the
bottom pressure will be low at the front relative to the stationary glass, and high at the back (again relative
to the stationary glass). Note that the pressure in all cases is the hydrostatic pressure, which is directly
proportional to the fluid height.

3-93C When a vertical cylindrical container partially filled with water is rotated about its axis and rigid
body motion is established, the fluid level will drop at the center and rise towards the edges. Noting that
hydrostatic pressure is proportional to fluid depth, the pressure at the mid point will drop and the pressure
at the edges of the bottom surface will rise due to rotation.
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Chapter 3 Pressure and Fluid Statics

3-94 A water tank is being towed by a truck on a level road, and the angle the free surface makes with the
horizontal is measured. The acceleration of the truck is to be determined.

Assumptions 1 The road is horizontal so that acceleration has no vertical component (a, = 0). 2 Effects of
splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, and are not
considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction.
The tangent of the angle the free surface makes with the horizontal is

a
tan @ = —=
g+a,

Solving for a, and substituting,
a,=(g+a,)tand=(9.81 m/s? +0) tan15° =2.63 m/s?

Discussion Note that the analysis is valid for any fluid with constant density since we used no information
that pertains to fluid properties in the solution.
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Chapter 3 Pressure and Fluid Statics

3-95 Two water tanks filled with water, one stationary and the other moving upwards at constant
acceleration. The tank with the higher pressure at the bottom is to be determined.

Tank A ; Tank B
ey [ ]
A T a,=5m/s
8§m
z 2
N ® i
Water 2m Water o
\
o1 0 i}

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance.

Properties We take the density of water to be 1000 kg/m’.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid is given by
Py—P =-pa,(xy-x)-p(g+a.)z,-z) or P —P, =p(g+a.)(z;—z;)

since a, = 0. Taking point 2 at the free surface and point 1 at the tank bottom, we have P, =P, and

atm

z, —z, = h and thus

Pl,gage = Pbottom = p(g+az )

Tank A: We have a, = 0, and thus the pressure at the bottom is

1kN
P = pgh , = (1000 kg/m>)(9.81m/s? )(8 m)) —————— | = 78.5kN/m?
A, bottom P8 4 g 1000kgm/32
Tank B: We have a.=+5 m/s?, and thus the pressure at the bottom is
Py pottom = P(g+a.)hg = (1000 kg/m~)(9.81+5m/s*)(2 m) ———— |=29.6 kN/m
’ 1000 kg - m/s

Therefore, tank A has a higher pressure at the bottom.

Discussion We can also solve this problem quickly by examining the relation P, =p(g+a,)h.
Acceleration for tank B is about 1.5 times that of Tank A (14.81 vs 9.81 m/s?), but the fluid depth for tank

A is 4 times that of tank B (8 m vs 2 m). Therefore, the tank with the larger acceleration-fluid height
product (tank A in this case) will have a higher pressure at the bottom.
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Chapter 3 Pressure and Fluid Statics

3-96 A water tank is being towed on an uphill road at constant acceleration. The angle the free surface of
water makes with the horizontal is to be determined, and the solution is to be repeated for the downhill
motion case.

Uphill ¢ - Downhill ¢§

motion g motion

Free

rface
_121_’/§ﬁ

Horizontal

a=20°
X

Assumptions 1 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be
secondary, and are not considered. 2 The acceleration remains constant.

Analysis We take the x- and z-axes as shown in the figure. From geometrical considerations, the
horizontal and vertical components of acceleration are

a,=acosa
a,=asina
The tangent of the angle the free surface makes with the horizontal is

tan 6 = a,  acosa (5m/s?)cos 20°
g+a, g+asina 9.81m/s? +(5m/s?)sin20°

=04078 —> 0=22.2°

When the direction of motion is reversed, both a, and a, are in negative x- and z-direction, respectively, and
thus become negative quantities,

a,=-acosa
a,=—-asina
Then the tangent of the angle the free surface makes with the horizontal becomes

2
—(5m/ 20°
tan§ = —x =GOS _ (52 > )COSZO ~=-0.5801 — 0=-30.1°
gta, g+asma 98lm/s”—(5m/s”)sin20°

Discussion Note that the analysis is valid for any fluid with constant density, not just water, since we used
no information that pertains to water in the solution.
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Chapter 3 Pressure and Fluid Statics

3-97E A vertical cylindrical tank open to the atmosphere is rotated about the centerline. The angular
velocity at which the bottom of the tank will first be exposed, and the maximum water height at this
moment are to be determined.

A

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always
acts as a rigid body. 2 Water is an incompressible fluid.

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (=0, z = 0),
the equation for the free surface of the liquid is given as

2
z,(r) =hy —Z—g(}e2 —2%)

where A, = 1 ft is the original height of the liquid before rotation. Just before dry spot appear at the center
of bottom surface, the height of the liquid at the center equals zero, and thus z,(0) = 0. Solving the equation
above for o and substituting,

2
e [4gh, _ [AG220057)AM) g g e
R? (1ft)?

Noting that one complete revolution corresponds to 2m radians, the rotational speed of the container can
also be expressed in terms of revolutions per minute (rpm) as

_ o 11.35rad/s( 60s
27 2 rad/rev

n

)=108rpm

1 min

Therefore, the rotational speed of this container should be limited to 108 rpm to avoid any dry spots at the
bottom surface of the tank.
The maximum vertical height of the liquid occurs a the edges of the tank (r =R =1 ft), and it is

o’ R* (11.35 rad/s)* (1 ft)?

=(1ft)+ ———=2.00 ft
4(32.2 ft/s?)

z(R)=hy +

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any
other fluid property.
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Chapter 3 Pressure and Fluid Statics

3-98 A cylindrical tank is being transported on a level road at constant acceleration. The allowable water
height to avoid spill of water during acceleration is to be determined

a, =4 m/s’
—_—
— W
Myl o
Water Db =60 cm
tank
\
D D=40cm

Assumptions 1 The road is horizontal during acceleration so that acceleration has no vertical component (a,
= 0). 2 Effects of splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary,
and are not considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction,
and the origin to be the midpoint of the tank bottom. The tangent of the angle the free surface makes with
the horizontal is

a, 4
= =0.4077 (and thus 6 =22.2°)
g+a, 981+0
The maximum vertical rise of the free surface occurs at the back of the tank, and the vertical midplane
experiences no rise or drop during acceleration. Then the maximum vertical rise at the back of the tank
relative to the midplane is

Az, =(D/2)tand=[(0.40 m)/2]x0.4077 = 0.082 m = 8.2 cm

tan @ =

Therefore, the maximum initial water height in the tank to avoid spilling is
Pnax = Piankc = AZpnay =60—-8.2=51.8 cm

Discussion Note that the analysis is valid for any fluid with constant density, not just water, since we used
no information that pertains to water in the solution.
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Chapter 3 Pressure and Fluid Statics

3-99 A vertical cylindrical container partially filled with a liquid is rotated at constant speed. The drop in
the liquid level at the center of the cylinder is to be determined.

l N
|
|
Free |
surface _
________ D
|
i
|
Z ! h, = 60 cm
z!
T — \

r

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always
acts as a rigid body. 2 The bottom surface of the container remains covered with liquid during rotation (no

dry spots).

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (» =0, z = 0),
the equation for the free surface of the liquid is given as

>
z,(r)=hy ——(R* =2r?)
4g
where %y = 0.6 m is the original height of the liquid before rotation, and

w=2m=2x(120 rev/min)(1 ai
60s

j =12.57 rad/s

Then the vertical height of the liquid at the center of the container where » = 0 becomes

o’ R? (12.57 rad/s)* (0.20 m)?

=(0.60m)— . =0.44m
4(9.81m/s?)

Zg (0) = hO -

Therefore, the drop in the liquid level at the center of the cylinder is
Ahgrop, center =ho —25(0)=0.60-0.44=0.16 m

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any
other fluid property. Also, our assumption of no dry spots is validated since zy(0) is positive.
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Chapter 3 Pressure and Fluid Statics

3-100 The motion of a fish tank in the cabin of an elevator is considered. The pressure at the bottom of the
tank when the elevator is stationary, moving up with a specified acceleration, and moving down with a
specified acceleration is to be determined.

Fish Tank
2
e
A ¢ T a,=3m/s>
h=40 cm
: |
T Water g
Y
0 1

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance.
Properties We take the density of water to be 1000 kg/m’.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid is given by
Py—P =-pa,(x;, —x))-p(g+a. )z, —z;) or P -P,=p(g+a.)z;—z))

since a, = 0. Taking point 2 at the free surface and point 1 at the tank bottom, we have P, =P, and

atm

z, —z; = h and thus
Pl,gage = Pbottom =p(g+ a, )h
(a) Tank stationary: We have a, = 0, and thus the gage pressure at the tank bottom is

1kN

Piotiom = p2h = (1000 kg/m>)(9.81m/s*)(0.4 m)] ——————
bott Pgh = ( g/m=)( X )(1000kg~m/sz

J =3.92kN/m? =3.92kPa

(b) Tank moving up: We have a. = +3 m/s”, and thus the gage pressure at the tank bottom is

1kN

Pioiiom = P(g+a.)hg = (1000 kg/m*)(9.81+ 3 m/s?)(0.4 m)) ———————
bottom = 218 8 s 1000 kg - m/s>

J: 5.12kN/m? =5.12kPa

(¢) Tank moving down: We have a, = -3 m/s?, and thus the gage pressure at the tank bottom is

1kN

Pioom = p(g+a, )y = (1000 kg/m*)(9.81-3m/s*)(0.4 m)| ———————
bottom = P(g +a:)hg =( gim”)( X )[1000kgwsz

J =2.72kN/m? = 2.72 kPa

Discussion Note that the pressure at the tank bottom while moving up in an elevator is almost twice that
while moving down, and thus the tank is under much greater stress during upward acceleration.
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Chapter 3 Pressure and Fluid Statics

3-101 vertical cylindrical milk tank is rotated at constant speed, and the pressure at the center of the bottom
surface is measured. The pressure at the edge of the bottom surface is to be determined.

l N
|
|

Free |

surface _
________ D

Zs

z

|

i

i

i

i

L |
[J SN
Py iR=1.50

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always
acts as a rigid body. 2 Milk is an incompressible substance.

Properties The density of the milk is given to be 1030 kg/m”.

Analysis Taking the center of the bottom surface of the rotating vertical cylinder as the origin (» =0, z = 0),
the equation for the free surface of the liquid is given as

>
z,(r) = hy ——(R* —=2r?)
4g
where R = 1.5 m is the radius, and

o =27/m = 27(12 rev/min) 1 min
60s

j =1.2566rad/s

The fluid rise at the edge relative to the center of the tank is

=1.1811m

2p2 2p2 2p2 2 2
Ah:ZS(R)_ZS(O):(th R ]—(ho_w R j:w R® _ (1.2566 rad/s)* (1.50 m)

4g 2g 2(9.81m/s?)
The pressure difference corresponding to this fluid height difference is

1kN

AP, = pehh = (1030 keg/m® )(9.81m/s2)(1.1811m) ———
bottom 1000 kg - m/s>

j=1.83 kN/m? =1.83 kPa

Then the pressure at the edge of the bottom surface becomes

Protom, cdge = Prottom.center + MPooyiom = 130+1.83=131.83 kPa =131.8 kPa

Discussion Note that the pressure is 1.4% higher at the edge relative to the center of the tank, and there is a
fluid level difference of 1.18 m between the edge and center of the tank, and these differences should be
considered when designing rotating fluid tanks.
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Chapter 3 Pressure and Fluid Statics

3-102 Milk is transported in a completely filled horizontal cylindrical tank accelerating at a specified rate.
The maximum pressure difference in the tanker is to be determined. VEES
a,=-3m/s’

Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance.
Properties The density of the milk is given to be 1020 kg/m’.

Analysis We take the x- and z- axes as shown. The horizontal acceleration is in the negative x direction,
and thus a, is negative. Also, there is no acceleration in the vertical direction, and thus @, = 0. The pressure
difference between two points 1 and 2 in an incompressible fluid in linear rigid body motion is given by

Py—P =—pa,(x,—x))—p(g+a.)z,—z;) —> P -P=-pa,(x;-x)-pg(z;-2)

The first term is due to acceleration in the horizontal direction and the resulting compression effect towards
the back of the tanker, while the second term is simply the hydrostatic pressure that increases with depth.
Therefore, we reason that the lowest pressure in the tank will occur at point 1 (upper front corner), and the
higher pressure at point 2 (the lower rear corner). Therefore, the maximum pressure difference in the tank
is

APy =Py =P =—pa, (x;, —x))—pg(zy —z;)=—a,(x, —x))+g(z, —2))]

= ~(1020 kg/m*)[(-2.5 m/s? )(7 m) + (9.8 1m/s> (-3 m{looolkk#]

=(17.9+30.0) kN/m? = 47.9 kPa
sincex; =0, x,=7m, z;=3m, and z, = 0.

Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal
direction while the variation of pressure in the vertical direction is due to the effects of gravity and
acceleration in the vertical direction (which is zero in this case).
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Chapter 3 Pressure and Fluid Statics

3-103 Milk is transported in a completely filled horizontal cylindrical tank decelerating at a specified rate.
The maximum pressure difference in the tanker is to be determined. VEES

a, =3 m/s’

Assumptions 1 The acceleration remains constant. 2 Milk is an incompressible substance.
Properties The density of the milk is given to be 1020 kg/m’.

Analysis We take the x- and z- axes as shown. The horizontal deceleration is in the x direction, and thus a,
is positive. Also, there is no acceleration in the vertical direction, and thus a, = 0. The pressure difference
between two points 1 and 2 in an incompressible fluid in linear rigid body motion is given by

Py—P =—pa,(x,—x))—p(g+a.)z,—z;) —> P -P=-pa,(x;-x)-pg(z;-2)

The first term is due to deceleration in the horizontal direction and the resulting compression effect towards
the front of the tanker, while the second term is simply the hydrostatic pressure that increases with depth.
Therefore, we reason that the lowest pressure in the tank will occur at point 1 (upper front corner), and the
higher pressure at point 2 (the lower rear corner). Therefore, the maximum pressure difference in the tank is

APy =Py =P =—pa, (x;, —x))—pg(zy —z;)=—a,(x, —x))+g(z, —z))]

= ~(1020 kg/m™)[2.5 ms? (=7 m) + (9.81m/s>)(=3 m){ﬁJ

=(17.9+30.0) kN/m? = 47.9 kPa
sincex;=7m, x, =0, z;=3m, and z, = 0.

Discussion Note that the variation of pressure along a horizontal line is due to acceleration in the horizontal
direction while the variation of pressure in the vertical direction is due to the effects of gravity and
acceleration in the vertical direction (which is zero in this case).
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Chapter 3 Pressure and Fluid Statics

3-104 A vertical U-tube partially filled with alcohol is rotated at a specified rate about one of its arms. The
elevation difference between the fluid levels in the two arms is to be determined.

=20 cm

Assumptions 1 Alglphol is'an incompressible fluid.

Analysis Taking the base of the left arm of the U-tube as the origin (» = 0, z = 0), the equation for the free
surface of the liquid is given as

2
z,(r) =hy —Z)—g(Rz ~2r%)

where 4, = 0.20 m is the original height of the liquid before rotation, and ® = 4.2 rad/s. The fluid rise at the
right arm relative to the fluid level in the left arm (the center of rotation) is

=0.056 m

2p2 2p2 2p2 2 2
Ah:ZS(R)_ZS(O):[hOer R J_(ho_w R j:w R’ _ (42rads)*(0.25m)

4g 2g 2(9.81m/s?)

Discussion Note that the analysis is valid for any liquid since the result is independent of density or any
other fluid property.
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Chapter 3 Pressure and Fluid Statics
3-105 A vertical cylindrical tank is completely filled with gasoline, and the tank is rotated about its vertical
axis at a specified rate. The pressures difference between the centers of the bottom and top surfaces, and the
pressures difference between the center and the edge of the bottom surface are to be determined. VEES

Assumptions 1 The increase in the rotational speed is very slow so that the liquid in the container always
acts as a rigid body. 2 Gasoline is an incompressible substance.

Properties The density of the gasoline is given to be 740 kg/m”.

Analysis The pressure difference between two points 1 and 2 in an incompressible fluid rotating in rigid

body motion is given by

po’
2

P =P =} 1) - pglz, - 2))

where R = 0.60 m is the radius, and

@ =21 = 27(70 rev/min)(l min
60s

] =7.330rad/s

(a) Taking points 1 and 2 to be the centers of the bottom and top surfaces, respectively, we have
r=r,=0 and z, —z; =h=3m. Then,

Pcenter, top Pcenter, bottom — 0- pg(ZZ —Z ) = —,ogh

1kN

= —(740 kg/m*)(9.81m/s*)(3 m)| ——————
£ 1000 kg - /s

J: 21.8kN/m? =21.8 kPa

(b) Taking points 1 and 2 to be the center and edge of the bottom surface, respectively, we have r, =0,
r, =R,and z, =z, =0. Then,

pa)sz

P

edge, bottom

-P

center, bottom

2
:p%(Rzz —0)-0=

_ (740 kg/m>)(7.33 rad/s)? (0.60 m)
2

LkN —|=7.16kN/m> =7.16 kPa
1000 kg - m/s

Discussion Note that the rotation of the tank does not affect the pressure difference along the axis of the
tank. But the pressure difference between the edge and the center of the bottom surface (or any other
horizontal plane) is due entirely to the rotation of the tank.

3-74
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc. Limited distribution
permitted only to teachers and educators for course preparation. If you are a student using this Manual, you
are using it without permission.




Chapter 3 Pressure and Fluid Statics

3-106 Problem 3-105 is reconsidered. The effect of rotational speed on the pressure difference between the
center and the edge of the bottom surface of the cylinder as the rotational speed varies from 0 to 500 rpm in
increments of 50 rpm is to be investigated.

g=9.81 "m/s2"
rho=740 "kg/m3"
R=0.6 "m"

h=3 llmll

omega=2*pi*n_dot/60 "rad/s"
DeltaP_axis=rho*g*h/1000 "kPa"
DeltaP_bottom=rho*omega”2*R*2/2000 "kPa"

Rotation rate Angular speed AP enier-cdge
n, rpm w, rad/s kPa
0 0.0 0.0
50 5.2 3.7
100 10.5 14.6
150 15.7 32.9
200 20.9 58.4
250 26.2 91.3
300 314 131.5
350 36.7 178.9
400 41.9 233.7
450 47.1 295.8
500 52.4 365.2
400 . " " " "
350 //
300

N
[o)]
o

AP, kPa

N
o
o

150 4

100- /
50 ~

0 L L L
0 100 200 , 300 400 500
n, rpm
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Chapter 3 Pressure and Fluid Statics

3-107E A water tank partially filled with water is being towed by a truck on a level road. The maximum
acceleration (or deceleration) of the truck to avoid spilling is to be determined.

—_—
AN
M2 0 _
Water hy|=6 ft
z ‘ tank
0 X
L=20ft |

Assumptions 1 The road is horizontal so that acceleration has no vertical component (a, = 0). 2 Effects of
splashing, breaking, driving over bumps, and climbing hills are assumed to be secondary, and are not
considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction.
The shape of the free surface just before spilling is shown in figure. The tangent of the angle the free
surface makes with the horizontal is given by

a
tan @ = —= - a,=gtand
gt+a,
where a, = 0 and, from geometric considerations, tané is
Ah
tanfd = ——
L/2

Substituting,

20 644mis?
(20 ft)/2

A
a, =gtan¢9:gL—/hz:(32.2 ft/s?)

The solution can be repeated for deceleration by replacing ay by — a,. We obtain a, = -6.44 m/s>.

Discussion Note that the analysis is valid for any fluid with constant density since we used no information
that pertains to fluid properties in the solution.
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Chapter 3 Pressure and Fluid Statics

3-108E A water tank partially filled with water is being towed by a truck on a level road. The maximum
acceleration (or deceleration) of the truck to avoid spilling is to be determined.

O
__________ 0 _V_Ah =051t
Water hy|=3ft
z ‘ tank
0 X
L=28ft

Assumptions 1 The road is horizontal so that deceleration has no vertical component (a, = 0). 2 Effects of
splashing and driving over bumps are assumed to be secondary, and are not considered. 3 The deceleration
remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be the upward vertical direction.
The shape of the free surface just before spilling is shown in figure. The tangent of the angle the free
surface makes with the horizontal is given by

fan § = — X - a,=-gtané
gt+a,
where a, = 0 and, from geometric considerations, tané is
Ah
tanfd =——
L/2
Substituting,
A 5
a, = —gtan0=—g -~ _322fs2) 221 _ 4,08 fuis?
) L/2 (8 ft)/2

Discussion Note that the analysis is valid for any fluid with constant density since we used no information
that pertains to fluid properties in the solution.
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Chapter 3 Pressure and Fluid Statics
3-109 Water is transported in a completely filled horizontal cylindrical tanker accelerating at a specified
rate. The pressure difference between the front and back ends of the tank along a horizontal line when the
truck accelerates and decelerates at specified rates. VEES
a,=-3m/s

Assumptions 1 The acceleration remains constant. 2 Water is an incompressible substance.
Properties We take the density of the water to be 1000 kg/m’.

Analysis (a) We take the x- and z- axes as shown. The horizontal acceleration is in the negative x direction,
and thus a, is negative. Also, there is no acceleration in the vertical direction, and thus @, = 0. The pressure
difference between two points 1 and 2 in an incompressible fluid in linear rigid body motion is given by

P,=P =—pa,(x, —x))—-p(g+a.)Nz, —z;) —> P -P=-pa,(x;-x))

since z; - z; = 0 along a horizontal line. Therefore, the pressure difference between the front and back of
the tank is due to acceleration in the horizontal direction and the resulting compression effect towards the
back of the tank. Then the pressure difference along a horizontal line becomes

1kN

AP=P, - P, =—pa_ (x, —x;)=—(1000 kg/m*)(-3m/s?>) (7T m) ———M—
y =B =—pa,(x; —x)=—( g/m™)( X )[1000kg~m/sz

J: 21kN/m? =21 kPa

since x; =0 and x, =7 m.

(b) The pressure difference during deceleration is determined the way, but a, = 4 m/s” in this case,

AP =P, —P, =—pa (x, —x,)=—(1000 kg/m*)(4 m/s*)(7 m) “‘—NZ =-28kN/m? =-28 kPa
1000 kg - m/s

Discussion Note that the pressure is higher at the back end of the tank during acceleration, but at the front
end during deceleration (during breaking, for example) as expected.
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