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Chapter 9  
Differential 

Analysis 
 
 
General and Mathematical Problems 
 
9-1C 
Solution We are to explain the fundamental differences between a flow domain 
and a control volume. 
 
Analysis A control volume is used in an integral, control volume solution. It 
is a volume over which all mass flow rates, forces, etc. are specified over the entire 
control surface of the control volume. In a control volume analysis we do not know or 
care about details inside the control volume. Rather, we solve for gross features of the 
flow such as net force acting on a body. A flow domain, on the other hand, is also a 
volume, but is used in a differential analysis. Differential equations of motion are 
solved everywhere inside the flow domain, and we are interested in all the details 
inside the flow domain. 
 
Discussion Note that we also need to specify what is happening at the boundaries 
of a flow domain – these are called boundary conditions. 

  
 
 

9-2C 
Solution We are to explain what we mean by coupled differential equations. 
 
Analysis A set of coupled differential equations simply means that the 
equations are dependent on each other and must be solved together rather than 
separately. For example, the equations of motion for fluid flow involve velocity 
variables in both the conservation of mass equation and the momentum equation. To 
solve for these variables, we must solve the coupled set of differential equations 
together. 
 
Discussion In some very simple fluid flow problems, the equations become 
uncoupled, and are easier to solve. 

  

9-1 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 
 
 
9-3C 
Solution We are to discuss the number of unknowns and the equations needed 
to solve for those unknowns for a three-dimensional, unsteady, incompressible flow 
field. 
 
Analysis There are four unknowns (velocity components u, v, w, and pressure 
P) and thus we need to solve four equations: 
 

− one from conservation of mass which is a scalar equation 
− three from Newton’s second law which is a vector equation 

 
Discussion These equations are also coupled in general. 

  
 
 
9-4C 
Solution We are to discuss the number of unknowns and the equations needed 
to solve for those unknowns for a three-dimensional, unsteady, compressible flow 
field with significant variations in both temperature and density. 
 
Analysis There are six unknowns (velocity components u, v, w, ρ, T, and P) 
and thus we need to solve six equations: 
 

− one from conservation of mass which is a scalar equation 
− three from Newton’s second law which is a vector equation 
− one from the energy equation which is a scalar equation 
− one from an equation of state (e.g. ideal gas law) which is a scalar equation 

 
Discussion These equations are also coupled in general. 

  
 
 
9-5C 
Solution We are to express the divergence theorem in words.  
 
Analysis For vector G , the volume integral of the divergence of G  over 
volume V is equal to the surface integral of the normal component of G  taken 
over the surface A that encloses the volume. 
 
Discussion The divergence theorem is also called Gauss’s theorem. 
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9-6 
Solution We are to transform a position from Cartesian to cylindrical 
coordinates.  
 
Analysis We use the coordinate transformations provided in this chapter, 

 ( ) ( )2 22 2 4 m 3 m  5 mr x y= + = + =  (1) 

and 

 1 1 o3 mtan tan 36.87 0.6435 radians
4 m

y
x

θ − −  = = = = 
 

 (2) 

Coordinate z remains unchanged. Thus, 

Position in cylindrical coordinates: ( ) ( ), ,x r zθ= = 5 m, 0.6435 radians, - 4 m  (3) 

 
Discussion Notice that the units of θ are radians since angles are dimensionless. 

  
 
 
9-7 
Solution We are to calculate a truncated Taylor series expansion for a given 
function and compare our result with the exact value.  
 
Analysis The algebra here is simple since d(ex)/dx = ex. The Taylor series 
expansion is 

Taylor series expansion: 0 0 0 02 3
0

1 1( )
2 3 2

x x x xf x dx e e dx e dx e dx ...+ = + + + +
×

 (1) 

We plug x0 = 0 and dx = –0.1 into Eq. 1, 

Truncated Taylor series expansion:

 2 31 1( 0.1) 1 1 ( 0.1) 1 ( 0.1) 1 ( 0.1) 0.9048333...
2 6

f − ≈ + × − + × × − + × × − =  (2) 

We compare Eq. 2 with the exact value, 

Exact value:  0.1( 0.1) 0.904837418...f e−− = = (3) 

Comparing Eqs. 2 and 3 we see that our approximation is good to four or five 
significant digits. 
 
Discussion The smaller the value of dx, the better the approximation. You can 
easily convince yourself of this by trying dx = 0.01 instead. 
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9-8 
Solution We are to calculate the divergence of a given vector.  
 
Analysis We calculate the divergence of G  by taking the dot product of the del 

operator i j k
x y z
∂ ∂ ∂

+ +∇ =
∂ ∂ ∂

 with G , 

Divergence of G :

 2 212 2
2

G i j k xzi x j z k z z
x y z

 ∂ ∂ ∂   0 2∇⋅ = + + ⋅ − + = + − =   ∂ ∂ ∂   
0  

 

It turns out that for this special case, the divergence of G  is zero. 
 
Discussion If G  were a velocity vector, this would mean that the flow field is 
incompressible. 

  
 
 
9-9 
Solution We are to perform both integrals of the divergence theorem for a 
given vector and volume, and verify that they are equal.  
 
Analysis We do the volume integral first: 

Volume integral: 

( )

1 1 1

0 0 0

1 1 1

0 0 0
               4 2

x y z yx z
V x y z

x y z

x y z

GG G
GdV dzdydx

x y z

z y y dzdydx

= = =

= = =

= = =

= = =

∂ ∂ ∂
∇ ⋅ = + + 

∂ ∂ ∂ 

= − +

∫ ∫ ∫ ∫

∫ ∫ ∫
 (1) 

The term in parentheses in Eq. 1 reduces to (4z – y), and we integrate this over z first, 

 ( )
1 1 1 112

00 0 0 0
2 2

x y x yz

zV x y x y
GdV z yz dydx y dydx

= = = ==

== = = =
 ∇ ⋅ = − = − ∫ ∫ ∫ ∫ ∫   

Then we integrate over y and then over x, 

Volume integral: 
121 1

0 0
0

32
2 2

y
x x

V x x
y

yGdV y dx dx
=

= =

= =
=

 
∇ ⋅ = − = = 

 
∫ ∫ ∫

3
2

 (2) 

 Next we calculate the surface integral of the divergence theorem. There are 
six faces of the cube, and unit vector n  points outward from each surface. Thus we 
split the area integral into six parts and sum them. For example, the right-most face 
has n  = (1,0,0), so G n⋅  = 4xz on this face. The bottom face has n  = (0,–1,0), so 

 = y2 on this face. The surface integral is then G ⋅n
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Surface integral:

 

( ) ( )

( ) ( )

1 1 1 1

0 0 0 01 0

Right face Left face

1 1 1 12 2

0 0 0 01

Top face

4 4

               

y z y z

A y z y zx x

z x z x

z x z xy

G ndA xz dzdy xz dzdy

y dxdz y dxdz

= = = =

= = = == =

= = = =

= = = ==

   ⋅ = + −      

 + − +  

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

( ) ( )

0

Bottom face

1 1 1 1

0 0 0 01 0

Front face Back face

               

y

x y x y

x y x yz z
yz dydx yz dydx

=

= = = =

= = = == =

 
  

  + + −    ∫ ∫ ∫ ∫ 


 (3) 

The three integrals on the far right of Eq. 3 are obviously zero. The other three 
integrals can be obtained carefully, 

 
[ ]

( ) ( )

121 1 11 12
000 0 0

0

1 1 1

0 0 0

2
2

1               2 1
2

y
y z xz x

xzA y z x
y

y z x

y z x

yG ndA z dy x dz dx

dy dz dx

=
= = == =

=== = =
=

= = =

= = =

 
 ⋅ = + − +   

 

 = + − +  
 

∫ ∫ ∫ ∫

∫ ∫ ∫
 (4) 

The last three integrals of Eq. 4 are trivial. The final result is 

Surface integral: 12 1
2A

G ndA⋅ = − + =∫
3
2

 (5) 

Since Eq. 2 and Eq. 5 are equal the divergence theorem works for this case. 
 
Discussion The integration was simple in this example since each face is flat and 
normal to an axis. In the general case in which the surface is curved, integration is 
much more difficult, but the divergence theorem always works.  
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9-10 
Solution We are to expand a dot product in Cartesian coordinates and verify it.  
 

Analysis In Cartesian coordinates the del operator is i j k
x y z
∂ ∂ ∂

+ +∇ =
∂ ∂ ∂

 

and we let x y zi G j G k= + +G G . The left hand side of the equation is thus 

Left hand side: 
( ) ( ) ( ) ( )

            

yx z

yx z
x y z

fGfG fG
fG

x y z
GG Gf f fG f G f G f

x x y y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
∂∂

z
∂∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂ ∂

s

 (1) 

The right hand side of the equation is 

Right hand ide:

 ( )   

   

yx z
x y z

yx z
x y z

G f f G
GG Gf f fG i G j G k i j k f

x y z x y z
GG Gf f fG G G f f f

x y z x y z

⋅∇ + ∇ ⋅

∂   ∂ ∂∂ ∂ ∂
= + + ⋅ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂   

∂∂ ∂∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂

 (2) 

Equations 1 and 2 are the same, and the given equation is verified. 
 
Discussion The product rule given in this problem was used in this chapter in the 
derivation of the alternative form of the continuity equation. 
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9-11 
Solution We are to expand the given equation in Cartesian coordinates and 
verify it.  
 

Analysis In Cartesian coordinates the del operator is i j k
x y z
∂ ∂ ∂

+ +∇ =
∂ ∂ ∂

 

and we let x y zF F i F j F k= + +  and x y zG G i G j G k= + + . The left hand side of the 
equation is thus 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

            

            

            

x x x y x z

y x y y y z

z x z y z z

x x y x z x

x y y y z y

x z y z z z

F G F G F G
FG F G F G

x y z
F G

F G F G F G

F G F G F G
x y z

i

F G F G F G
x y z

F G F G F G
x y z

 
 ∂ ∂ ∂  

∇ ⋅ =    ∂ ∂ ∂   
 

j

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + + ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + + ∂ ∂ ∂ 
k

 (1) 

We use the product rule on each term in Eq. 1 and rearrange to get 

Left hand side:

 

( )

            

            

yx z
x x y

yx z
y x y z

yx z
z x y z

FF F
z x

y

FG G F F F G
x y z x y z

FF F
G F F F

x y z x y z

FF F
G F F F

x y z x y z

i

G j

 ∂   ∂ ∂ ∂ ∂ ∂
∇ ⋅ = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

 ∂   ∂ ∂ ∂ ∂ ∂
+ + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

∂  ∂ ∂ ∂ ∂ ∂
+ + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

zG k
 
  
   

 (2) 

We recognize that yx z
FF F F

x y z
∂∂ ∂

+ + = ∇ ⋅
∂ ∂ ∂

 and x y zF F F F
x y z
∂ ∂ ∂
+ + =

∂ ∂ ∂
⋅∇ . Eq. 2 

then becomes 

Left hand side:

 
( ) ( ) ( ) ( ) ( )

( ) ( )            

x x y

z z

yFG G F F G i G F F G

G F F G k

j   ∇ ⋅ = ∇ ⋅ + ⋅∇ + ∇ ⋅ + ⋅∇   
 + ∇ ⋅ + ⋅∇ 

 (3) 

After rearrangement, Eq. 3 becomes 

Left hand side:
 ( ) ( )( ) ( )( )x y z x y zFG G i G j G k F F G i G j G k∇⋅ = + + ∇ ⋅ + ⋅∇ + +  (4) 

Finally, recognizing vector G  twice in Eq. 4, we see that the left hand side of the 
given equation is identical to the right hand side, and the given equation is verified. 
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9-12 
Solution We are to prove the equation.  
 
Analysis We let F Vρ=  and G V= . Using Eq. 1 of Problem 9-11, we have 

 ( ) ( ) ( )VV V V V Vρ ρ ρ∇ ⋅ = ∇ ⋅ + ⋅∇  (1) 

However, since the density is not operated on in the second term of Eq. 1, it can be 
brought outside of the parenthesis, even though it is not a constant in general. 
Equation 1 can thus be written as 

 ( ) ( ) ( )VV V V V Vρ ρ ρ∇⋅ = ∇⋅ + ⋅∇  (2) 

 
Discussion Equation 2 was used in this chapter in the derivation of the alternative 
form of Cauchy’s equation. 

  
 
 
9-13 
Solution We are to transform cylindrical velocity components to Cartesian 
velocity components.  
 
Analysis We apply trigonometry, recognizing that the angle between u and ur is 
θ, and the angle between v and uθ is also θ, 

x component of velocity: cos sinru u uθθ θ= −  (1) 

Similarly, 

y component of velocity: sin cosrv u uθθ θ= +  (2) 

The transformation of the z component is trivial, 

z component of velocity: zw u=  (3) 

 
Discussion These transformations come in handy. 
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9-14 
Solution We are to transform Cartesian velocity components to cylindrical 
velocity components.  
 
Analysis We apply trigonometry, recognizing that the angle between u and ur is 
θ, and the angle between v and uθ is also θ, 

ur component of velocity: cos sinru u vθ θ= +  (1) 

Similarly, 

uθ component of velocity:: sin cosu u vθ θ θ= − +  (2) 

The transformation of the z component is trivial, 

z component of velocity: zu w=  (3) 

 
Discussion You can also obtain Eqs. 1 and 2 by solving Eq.s 1 and 2 of Problem 
9-13 simultaneously. 
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9-15 
Solution We are to transform a given set of Cartesian coordinates and velocity 
components into cylindrical coordinates and velocity components.  
 
Analysis First we apply the coordinate transformations given in this chapter, 

 ( ) ( )2 22 2 0.50 m 0.20 m  0.5385 mr x y= + = + =  (1) 

and 

 1 1 o0.20 mtan tan 21.80 0.3805 radians
0.50 m

y
x

θ − −  = = = = 
 

 (2) 

Next we apply the results of Problem 9-14, 

 m 0.50 m m 0.20 m mcos sin 10.3 5.6 7.484
s 0.5385 m s 0.5385 m sru u vθ θ= + = × − × =  (3) 

and 

 m 0.20 m m 0.50 m msin cos 10.3 5.6 9.025
s 0.5385 m s 0.5385 m s

vθ θ θ= − + = − × − × = −u u  (4) 

Note that we have used the fact that x = rcosθ and y = rsinθ for convenience in Eqs. 3 
and 4. Our final results are summarized to three significant digits: 

Results: m m0.539 m,  0.381 radians,  7.48 ,   9.03
s srr u θθ= = = = −u  (5) 

 We verify our result by calculating the square of the speed in both coordinate 
systems. In Cartesian coordinates, 

 
2 2 2

2 2 2
2

m m10.3 5.6 137.5
s s

V u v    = + = + − =   
   

m
s

 (6) 

In cylindrical coordinates, 

 
2 2 2

2 2 2
2

m m7.484 9.025 137.5
s srV u uθ

   = + = + − =   
   

m
s

 (7) 

 
Discussion Such checks of our algebra are always wise. 
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9-16 
Solution We are to transform a given set of Cartesian velocity components into 
cylindrical velocity components, and identify the flow. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis We recognize that r x2 2 y2= + . We also know that y = rsinθ and x = 
rcosθ. Uisng the results of Problem 9-14, the cylindrical velocity components are 

ur component of velocity:

 2 2

sin cos sin coscos sin 0r
Cr Cru u v

r r
θ θ θ θθ θ= + = − =  (1) 

Similarly, 

uθ component of velocity::

 
2 2

2 2

sin cossin cos Cr Cr Cu u v
rr rθ

θ θθ θ −
= − + = − − =  

(2) 

where we have also used the fact that cos2θ + sin2θ = 1. 
 We recognize the velocity components of Eqs. 1 and 2 as those of a line 
vortex. 
 
Discussion The negative sign in Eq. 2 indicates that this vortex is in the clockwise 
direction. 
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9-17 
Solution We are to transform a given set of cylindrical velocity components 
into Cartesian velocity components.  
 
Analysis We apply the coordinate transformations given in this chapter, along 
with the results of Problem 9-13, 

x component of velocity: cos sin
2 2r
m x yu u u

r r r rθθ θ
π π

Γ
= − = −  (1) 

We recognize that 2 2r x y2= + . Thus, Eq. 1 becomes 

x component of velocity: 
( ) ( )2 2

1
2

u m
x yπ

= −
+

x yΓ  (2) 

Similarly, 

y component of velocity: sin cos
2 2r
m y xv u u

r r r rθθ θ
π π

Γ
= + = +  (3) 

Again recognizing that 2 2r x y2= + , Eq. 3 becomes 

y component of velocity: 
( ) ( )2 2

1
2

v m
x yπ

= +
+

y xΓ  (4) 

 We verify our result by calculating the square of the speed in both coordinate 
systems. In Cartesian coordinates, 

 
( )

( )

( )
( )

2 2 2 2 2 2 2
22 2 2

2 2 2 2
22 2 2

1 2
4

1                  2
4

V u v m x mx y y
x y

m y my x x
x y

π

π

= + = − Γ + Γ
+

+ + Γ
+

+ Γ
 (5) 

Two of the terms in Eq. 5 cancel, and we combine the others. After simplification, 

Magnitude of velocity squared: 
( ) ( )2 2 2 2 2

2 2 2

1
4

V u v m
x yπ

= + = + Γ
+

 (6) 

We calculate V2 from the components given in cylindrical coordinates as well, 

Magnitude of velocity squared: 
2 2 2

2 2 2
2 2 2 2 2 24 4 4r

m mV u u
r rθ π π π

Γ +
= + = + =

2

r
Γ

2

 (7) 

Finally, since 2 2r x y= + , Eqs. 6 and 7 are the same, and the results are verified. 
 
Discussion Such checks of our algebra are always wise. 
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9-18E 
Solution We are to transform a given set of Cartesian coordinates and velocity 
components into cylindrical coordinates and velocity components.  
 
Analysis First we apply the coordinate transformations given in this chapter, 

 ( )o 1 ftcos 6.20 in cos 30.0 0.4474 ft
12 in

x r θ  = = × = 
 

 (1) 

and 

 ( )o 1 ftsin 6.20 in sin 30.0 0.2583 ft
12 in

y r θ  = = × = 
 

 (2) 

Next we apply the results of Problem 9-13, 

 

( ) ( )o oft ft ftcos sin 1.37 cos 30.0 3.82 sin 30.0 0.7235
s sru u uθθ θ= − = × − × = −

s
 

(3) 

and 

 ( ) ( )o oft ft ftsin cos 1.37 sin 30.0 3.82 cos 30.0 3.993
s srv u uθθ θ= + = × + × =

s
 (4) 

Our final results are summarized to three significant digits: 

Results: ,  ,  ,   x y u v= = = =
ft ft0.447 ft 0.258 ft -0.724 3.99
s s

 (5) 

 We verify our result by calculating the square of the speed in both coordinate 
systems. In Cartesian coordinates, 

 
2 2

2 2 2 ft ft0.7235 3.993
s s

V u v    = + = − + =   
   

2

2

ft16.47
s

 (6) 

In cylindrical coordinates, 

 
2 2

2 2 2 ft ft1.37 3.82
s srV u uθ

   = + = + =   
   

2

2

ft16.47
s

 (7) 

 
Discussion Such checks of our algebra are always wise. 
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Continuity Equation 
 
9-19C 
Solution We are to discuss the material derivative of density for the case of 
compressible and incompressible flow. 
 
Analysis If the flow field is compressible, we expect that as a fluid particle (a 
material element) moves around in the flow, its density changes. Thus the material 
derivative of density (the rate of change of density following a fluid particle) will be 
non-zero. However, if the flow field is incompressible, the density remains constant. 
As a fluid particle moves around in the flow, the material derivative of density must 
be zero (no change in density following the fluid particle). 
 
Discussion The material derivative of any property is the rate of change of that 
property following a fluid particle. 

  
 
 
9-20C 
Solution We are to explain why the derivation of the continuity via the 
divergence theorem is so much less involved than the derivation of the same equation 
by summation of mass flow rates through each face of an infinitesimal control 
volume.  
 
Analysis In the derivation using the divergence theorem, we begin with the 
control volume form of conservation of mass, and simply apply the divergence 
theorem. The control volume form was already derived in Chap. 5, so we begin the 
derivation in this chapter with an established conservation of mass equation. On the 
other hand, the alternative derivation is from “scratch” and therefore requires much 
more algebra. 
 
Discussion The bottom line is that the divergence theorem enables us to quickly 
convert the control volume form of the conservation law into the differential form. 

  
 
 
9-21 
Solution For given velocity component u and density ρ, we are to predict 
velocity component v, plot an approximate shape of the duct, and predict its height at 
section (2). 
 
Assumptions 1 The flow is steady and two-dimensional in the x-y plane, but 
compressible. 2 Friction on the walls is ignored. 3 Axial velocity u and density ρ vary 
linearly with x. 4 The x axis is a line of top-bottom symmetry. 
 
Properties The fluid is air at room temperature. The speed of sound is about 340 
m/s, so the flow is subsonic, but compressible. 
 
Analysis (a) We write expressions for u and ρ, forcing them to be linear in x, 
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( )

2 1
1

m100 300 1s         100
2.0 m su u

u u
u u C x C

x

−−
= + = = = −

∆
 (1) 

and 

 
( ) 3

2 1
1 4

kg1.2 0.85 kgm          0.175
2.0 m m

C x C
xρ ρ

ρ ρ
ρ ρ

−−
= + = = =

∆
 (2) 

where Cu and Cρ are constants. We use the compressible form of the steady continuity 
equation, placing the unknown term v on the left hand side, and plugging in Eqs. 1 
and 2, 

 
( ) ( ) ( )( )( )1 1 uC x u C xv u

y x x

∂ + +∂ ∂
= − = −

∂ ∂ ∂
ρρρ ρ

  

After some algebra, 

 
( ) ( )1 1 2u u

v
C u C C C

y
∂

= − + −
∂ ρ

ρ
ρ xρ  (3) 

We integrate Eq. 3 with respect to y, 

 ( ) ( )1 1 2u uv C u C y C C xy f= − + − +ρ ρρ ρ x  (4) 

Note that since the integration is a partial integration, we must add some arbitrary 
function of x instead of simply a constant of integration. We now apply boundary 
conditions. We argue that since the flow is symmetric about the x axis (y = 0), v must 
equal zero at y = 0 for any x. This is possible only if f(x) is identically zero. Applying 
f(x) = 0, dividing by ρ to solve for v, and then plugging in Eq. 2, Eq. 4 becomes 

0

0.5

1

1.5

2

0 0.5 1 1.5 2
x 

y 
Top wall 

Symmetry line  
 

FIGURE 1 
Streamlines for the diverging duct of 
Problem 9-21. 

 
( ) ( )1 1 1 1

1

2 2u u uC u C y C C xy C u C y C C xy
v

C x

− + − − + −
= =

+
ρ ρ ρ

ρ

ρ ρ

ρ ρ
u ρ  (5) 

 
(b) For known values of u and v, we can plot streamlines between x = 0 and x = 2.0 m 
using the technique described in Chap. 4. Several streamlines are shown in Fig. 1. The 
streamline starting at x = 0, y = 0.8 m is the top wall of the duct. 
 
(c) At section (2), the top streamline crosses y = 1.70 m at x = 2.0 m. Thus, the 
predicted height of the duct at section (2) is 1.70 m. 
 
Discussion You can verify that the combination of Eqs. 1, 2, and 5 satisfies the 
steady compressible continuity equation. However, this alone does not guarantee that 
the density and velocity components will actually follow these equations if the 
diverging duct were to be built as designed here. The actual flow depends on the 
pressure rise between sections (1) and (2) – only one unique pressure rise can yield 
the desired flow deceleration. Temperature may also change considerably in this kind 
of compressible flow field. 
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9-22 
Solution We are to repeat Example 9-1, but without using continuity.  
 
Assumptions 1 Density varies with time, but not space; in other words, the density 
is uniform throughout the cylinder at any given time, but changes with time. 2 No 
mass escapes from the cylinder during the compression. 
 
Analysis The mass inside the cylinder is constant, but the volume decreases 
linearly as the piston moves up. At t = 0 when L = LBottom the initial volume of the 
cylinder is V(0) = LBottomA, where A is the cross-sectional area of the cylinder. At t = 0 
the density is ρ = ρ(0) = m/V(0), and thus 

Mass in the cylinder: ( ) ( ) ( ) Bottom0 0 0m V Lρ ρ= = A

t

 (1) 

Mass m (Eq. 1) is a constant since no mass escapes during the compression. At some 
later time t, Bottom PL L V= −  and the volume is thus 

Cylinder volume at time t:  ( Bottom PV L V t= − ) A (2) 

The density at time t is 

Density at time t: 
( )

( )
Bottom

Bottom P

0 L Am
V L V t

ρ
ρ = =

− A
 (3) 

where we have plugged in Eq. 1 for m and Eq. 2 for V. Equation 3 reduces to 

 Bottom

Bottom P

(0) L
L V

=
−

ρ ρ
t

 (4) 

or, using the nondimensional variables of Example 9-1, 

Nondimensional result: 
P

Bottom

1 1          or          *
(0) 1 *1 V t t

L

= =
−−

ρ ρ
ρ

 
(5) 

which is identical to Eq. 5 of Example 9-1. 
 
Discussion We see by this exercise that the continuity equation is indeed an 
equation of conservation of mass. 
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9-23 
Solution We are to expand the continuity equation in Cartesian coordinates.  
 
Analysis We expand the second term by taking the dot product of the del 

operator i j k
x y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

∇ =  with ( ) ( ) ( )V u i v j wρ ρ ρ ρ= + + k , giving 

Compressible continuity equation in Cartesian coordinates:

 
( ) ( ) ( )

0
u v w

t x y z
∂ ∂ ∂∂

+ + +
∂ ∂ ∂ ∂

ρ ρ ρρ
=  (1) 

We can further expand Eq. 1 by using the product rule on the spatial derivatives, 
resulting in 7 terms, 

Further expansion: 0u v wu v w
t x x y y z z
ρ ρ ρρ ρ ρ∂ ∂ ∂ ∂ ∂ ∂ ∂ρ
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2) 

 
Discussion We can do a similar thing in cylindrical coordinates, but the algebra is 
somewhat more complicated. 

  
 
 
9-24 
Solution We are to write the given equation as a word equation and discuss it. 
 
Analysis Here is a word equation: “The time rate of change of volume of a 
fluid particle per unit volume is equal to the divergence of the velocity field.” As 
a fluid particle moves around in a compressible flow, it can distort, rotate, and get 
larger or smaller. Thus the volume of the fluid element can change with time; this is 
represented by the left hand side of the equation. The right hand side is identically 
zero for an incompressible flow, but it is not zero for a compressible flow. Thus we 
can think of the volumetric strain rate as a measure of compressibility of a fluid flow. 
 
Discussion Volumetric strain rate is a kinematic property as discussed in Chap. 4. 
Nevertheless, it is shown here to be related to the continuity equation (conservation of 
mass). 
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9-25 
Solution We are to verify that a given flow field satisfies the continuity 
equation, and we are to discuss conservation of mass at the origin.  
 
Analysis The 2-D cylindrical velocity components (ur,uθ) for this flow field are 

Cylindrical velocity components:           
2 2r
mu u

r rθπ π
Γ

= =  (1) 

where m and Γ are constants We plug Eq. 1 into the incompressible continuity 
equation in cylindrical coordinates, 

Incompressible continuity:

( ) ( ) ( )1 1 1 20     or     r z

m
ru u u

r r r z r r
θ π
θ

 ∂  ∂ ∂ ∂  + + =
∂ ∂ ∂ ∂

0

1 2 r
r

π
θ

Γ ∂  
 +
∂

( )

0

zu
z

∂
+

∂
0

0=  
(2) 

The first term is zero because it is the derivative of a constant. The second term is 
zero because r is not a function of θ. The third term is zero since this is a 2-D flow 
with uz = 0. Thus, we verify that the incompressible continuity equation is satisfied 
for the given velocity field. 
 At the origin, both ur and uθ go to infinity. Conservation of mass is not 
affected by uθ, but the fact that ur is non-zero at the origin violates conservation of 
mass. We think of the flow along the z axis as a line sink toward which mass 
approaches from all directions in the plane and then disappears (like a black hole in 
two dimensions). Mass is not conserved at the origin. 
 
Discussion Singularities such as this are unphysical of course, but are 
nevertheless useful as approximations of real flows, as long as we stay away from the 
singularity itself. 
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9-26 
Solution We are to verify that a given velocity field satisfies continuity. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis The velocity field of Problem 9-16 is 

Cartesian velocity components: 2 2 2 2          Cy Cxu v
x y x

−
= =

+ + y
 (1) 

We check continuity, staying in Cartesian coordinates, 

 

( ) ( )
3 32 2 2 22 2xCy x y yCx x y

u v w
x y z

− −− + +

∂ ∂ ∂
+ +

∂ ∂ ∂
0 since 2-D

0=  
 

So we see that the incompressible continuity equation is indeed satisfied. 
 
Discussion The fact that the flow field satisfies continuity does not guarantee that 
a corresponding pressure field exists that can satisfy the steady conservation of 
momentum equation. In this case, however, it does. 

  
 
 
9-27 
Solution We are to verify that a given velocity field is incompressible.  
 
Assumptions 1 The flow is two-dimensional, implying no z component of velocity 
and no variation of u or v with z. 
 
Analysis The components of velocity in the x and y directions respectively are 

 1.3 2.8           1.5 2.8u x v y= + = −   

To check if the flow is incompressible, we see if the incompressible continuity 
equation is satisfied: 

 

2.8 2.8

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0 since 2-D

0          or          2.8 2.8 0= − =   

So we see that the incompressible continuity equation is indeed satisfied. Hence the 
flow field is incompressible. 
 
Discussion The fact that the flow field satisfies continuity does not guarantee that 
a corresponding pressure field exists that can satisfy the steady conservation of 
momentum equation. 
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9-28 
Solution We are to find the most general form of the radial velocity component 
of a purely radial flow that does not violate conservation of mass.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis We use cylindrical coordinates for convenience. We solve for ur using 
the incompressible continuity equation, 

 
( ) ( )1 1rru u

r r r
θ

θ
∂ ∂

+
∂ ∂

( )

0 for radial flow

zu
z

∂
+

∂
( )

0 for 2-D flow

0     or     0rru
r

∂
= =

∂
 (1) 

We integrate Eq. 1 with respect to r, adding a function of the other variable θ rather 
than simply a constant of integration since this is a partial integration, 

Result: ( ) ( )
     or     r r

f
ru f u

r
θ

θ= =  (2) 

 
Discussion Any function of θ in Eq. 2 will satisfy the continuity equation. 

  
 
 
9-29 
Solution We are to determine a relationship between constants a, b, c, and d 
that ensures incompressibility.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible (under certain 
restraints to be determined). 
 
Analysis We plug the given velocity components into the incompressible 
continuity equation, 

Condition for incompressibility: 
2 23ay cy

u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

2 2

0

0          3 0ay cy= + =  
 

Thus to guarantee incompressibility, constants a and c must satisfy the following 
relationship: 

Condition for incompressibility: 3a c= −  (1) 

 
Discussion If Eq. 1 were not satisfied, the given velocity field might still 
represent a valid flow field, but density would have to vary with location in the flow 
field – in other words the flow would be compressible. 
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9-30 
Solution We are to find the y component of velocity, v, using a given 
expression for u.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane, implying that w = 0 and neither u nor v depend on z. 
 
Analysis Since the flow is steady and incompressible, we apply the 
incompressible continuity in Cartesian coordinates to the flow field, giving 

Condition for incompressibility: 

a

v u w
y x z
∂ ∂ ∂

= − −
∂ ∂ ∂

0

          v a
y
∂

= −
∂

  

Next we integrate with respect to y. Note that since the integration is a partial 
integration, we must add some arbitrary function of x instead of simply a constant of 
integration. 

Solution: ( )v ay f x= − +   

If the flow were three-dimensional, we would add a function of x and z instead. 
 
Discussion To satisfy the incompressible continuity equation, any function of x 
will work since there are no derivatives of v with respect to x in the continuity 
equation. Not all functions of x are necessarily physically possible, however, since the 
flow must also satisfy the steady conservation of momentum equation. 

  
 
 
9-31 
Solution We are to find the most general form of the tangential velocity 
component of a purely circular flow that does not violate conservation of mass.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis We use cylindrical coordinates for convenience. We solve for uθ using 
the incompressible continuity equation, 

 
( )1 rru

r r
∂

∂
( ) ( )

0 for circular flow

1 zu u
r z

θ

θ
∂ ∂

+ +
∂ ∂

( )

0 for 2-D flow

0     or     0
uθ
θ

∂
= =

∂
 (1) 

We integrate Eq. 1 with respect to θ, adding a function of the other variable r rather 
than simply a constant of integration since this is a partial integration, 

Result: ( )u f rθ =  (2) 

 
Discussion Any function of r in Eq. 2 will satisfy the continuity equation. 
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9-32 
Solution We are to find the y component of velocity, v, using a given 
expression for u.  
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane, implying that w = 0 and neither u nor v depend on z. 
 
Analysis We plug the velocity components into the steady incompressible 
continuity equation, 

Condition for incompressibility: 

a

v u w
y x z
∂ ∂ ∂

= − −
∂ ∂ ∂

0

          v a
y
∂

= −
∂

  

Next we integrate with respect to y. Note that since the integration is a partial 
integration, we must add some arbitrary function of x instead of simply a constant of 
integration. 

Solution: ( )v ay f x= − +   

If the flow were three-dimensional, we would add a function of x and z instead. 
 
Discussion To satisfy the incompressible continuity equation, any function of x 
will work since there are no derivatives of v with respect to x in the continuity 
equation. Not all functions of x are necessarily physically possible, however, since the 
flow may not be able to satisfy the steady conservation of momentum equation. 

  
 

9-33 
Solution We are to find the y component of velocity, v, using a given 
expression for u.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane, implying that w = 0 and neither u nor v depend on z. 
 
Analysis We plug the velocity components into the steady incompressible 
continuity equation, 

Condition for incompressibility: 

2ax by

v u w
y x z

−

∂ ∂ ∂
= − −

∂ ∂ ∂
0

          2v ax by
y
∂

= − +
∂

  

Next we integrate with respect to y. Note that since the integration is a partial 
integration, we must add some arbitrary function of x instead of simply a constant of 
integration. 

Solution: ( )
2

2
2

byv axy f= − + + x   

If the flow were three-dimensional, we would add a function of x and z instead. 
 
Discussion To satisfy the incompressible continuity equation, any function of x 
will work since there are no derivatives of v with respect to x in the continuity 
equation. 
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9-34 
Solution For a given axial velocity component in an axisymmetric flow field, 
we are to generate the radial velocity component.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric implying that uθ = 0 and there is no variation in the θ direction. 
 
Analysis We use the incompressible continuity equation in cylindrical 
coordinates, simplified as follows for axisymmetric flow, 

Incompressible axisymmetric continuity equation: 
( ) ( )1 0r zru u

r r z
∂ ∂

+ =
∂ ∂

 (1) 

We rearrange Eq. 1, 

 
( ) ( ) ,exit ,entrancer z z zru u u u

r r
r z L

∂ ∂ −
= − = −

∂ ∂
 (2) 

We integrate Eq. 2 with respect to r, 

 ( )
2

,exit ,entrance

2
z z

r

u urru f z
L
−

= − +  (3) 

Notice that since we performed a partial integration with respect to r, we add a 
function of the other variable z rather than simply a constant of integration. We divide 
all terms in Eq. 3 by r and recognize that the term with f(z) will go to infinity at the 
centerline of the nozzle (r = 0) unless f(z) = 0. We write our final expression for ur, 

Radial velocity component: ,exit ,entrance

2
z z

r

u uru
L
−

= −  (4) 

 
Discussion You should plug the given equation and Eq. 4 into Eq. 1 to verify that 
the result is correct. (It is.) 

  
 
 

9-17 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 
9-35 
Solution We are to find the z component of velocity using given expressions 
for u and v.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 
 
Analysis We apply the steady incompressible continuity equation to the given 
flow field, 

Condition for incompressibility: 

2

2          

a by bz

w u v w a by bz
z x y z

+ −

∂ ∂ ∂ ∂
= − − = − − +

∂ ∂ ∂ ∂
  

Next we integrate with respect to z. Note that since the integration is a partial 
integration, we must add some arbitrary function of x and y instead of simply a 
constant of integration. 

Solution: ( )
3

,
3

bzw az byz f x y= − − + +   

 
Discussion To satisfy the incompressible continuity equation, any function of x 
and y will work since there are no derivatives of w with respect to x or y in the 
continuity equation. 

  
 
 
Stream Function 
 
9-36C 
Solution We are to discuss the significance of curves of constant stream 
function, and why the stream function is useful.  
 
Analysis Curves of constant stream function represent streamlines of a flow. A 
stream function is useful because by drawing curves of constant ψ, we can visualize 
the instantaneous velocity field. In addition, the change in the value of ψ from one 
streamline to another is equal to the volume flow rate per unit width between the two 
streamlines. 
 
Discussion Streamlines are an instantaneous flow description, as discussed in 
Chap. 4. 
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9-37C 
Solution We are to discuss the restrictions on the stream function that cause it 
to exactly satisfy 2-D incompressible continuity, and why they are necessary.  
 
Analysis Stream function ψ must be a smooth function of x and y (or r and 
θ). These restrictions are necessary so that the second derivatives of ψ with respect to 
both variables are equal regardless of the order of differentiation. In other words, if 

2 2

x y y x
ψ ψ∂ ∂

=
∂ ∂ ∂ ∂

, then the 2-D incompressible continuity equation is satisfied exactly by 

the definition of ψ. 
 
Discussion If the stream function were not smooth, there would be sudden 
discontinuities in the velocity field as well – a physical impossibility that would 
violate conservation of mass. 

  
 
9-38C 
Solution We are to discuss the significance of the difference in value of stream 
function from one streamline to another.  
 
Analysis The difference in the value of ψ from one streamline to another is 
equal to the volume flow rate per unit width between the two streamlines. 
 
Discussion This fact about the stream function can be used to calculate the 
volume flow rate in certain applications. 

  
 
9-39 
Solution For a given stream function we are to generate expressions for the 
velocity components.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-θ plane. 
 
Analysis We differentiate ψ to find the velocity components in cylindrical 
coordinates, 

Radial velocity component: 
2

2

1 cos 1 au V
r rθ

ψ θ
θ

 ∂
= = − ∂  

  

and 

Tangential velocity component: 
2

2sin 1 au V
r rθ
ψ θ

 ∂
= − = − +∂  

   

 
Discussion The radial velocity component is zero at the cylinder surface (r = a), 
but the tangential velocity component is not. In other words, this approximation does 
not satisfy the no-slip boundary condition along the cylinder surface. See Chap. 10 for 
a more detailed discussion about such approximations. 
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9-40 
Solution We are to generate an expression for the stream function along a 
vertical line in a given flow field, and we are to determine ψ at the top wall.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Analysis We start by picking one of the two definitions of the stream function 
(it doesn’t matter which part we choose – the solution will be identical).  

 Vu y
y h
ψ∂

= =
∂

 (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

 ( )2

2
V y g x
h

ψ = +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( )v
x
ψ∂ g x′= − = −
∂

 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for velocity component v, the given equation and Eq. 3. We equate 
these and integrate with respect to x, we find g(x), 

 ( ) ( ) ( )0           0          v g x g x g x′ ′ C= = − = =  (4) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Finally, plugging Eq. 4 into Eq. 2 yields the final expression for ψ, 

Stream function: 2

2
V y C
h

ψ = +  (5) 

 We find constant C by employing the boundary condition on ψ. Here, ψ = 0 
along y = 0 (the bottom wall). Thus C is equal to zero by Eq. 5, and 

Stream function: 2

2
V y
h

ψ =  (6) 

 Along the top wall, y = h, and thus 

Stream function along top wall: 2
top 2 2

V Vh
h

ψ = =
h  (7) 

 
Discussion The stream function of Eq. 6 is valid not only along the vertical 
dashed line of Fig. P9-40, but everywhere in the flow since the flow is fully 
developed and there is nothing special about any particular x location. 
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9-41 
Solution We are to generate an expression for the volume flow rate per unit 
width for Couette flow. We are to compare results from two methods of calculation.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Analysis We integrate the x component of velocity times cross-sectional area to 
obtain volume flow rate,  

 
2

0
0

2 2

y h
y h

y
A y

V Vy VV udA yWdy W W
h h

=
=

=
=

 
= = = = 

 
∫ ∫

h  (1) 

where W is the width of the channel into the page of Fig. P9-40. On a per unit width 
basis, we divide Eq. 1 by W to get 

Volume flow rate per unit width: 
2

V Vh
W

=  (2) 

 The volume flow rate per unit width between any two streamlines ψ2 and ψ1 
is equal to ψ2 – ψ1. We take the streamlines representing the top wall and the bottom 
wall of the channel. Using the result from Problem 9-40, 

Volume flow rate per unit width: top bottom 0
2 2

V Vh
W

ψ ψ= − = − =
Vh  (3) 

Equations 2 and 3 agree, as they must. 
 
Discussion The integration of Eq. 1 can be performed at any x location in the 
channel since the flow is fully developed. 
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9-42E 
Solution We are to plot several streamlines using evenly spaced values of ψ 
and discuss the spacing between the streamlines.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Analysis The stream function is obtained from the result of Problem 9-40, 

Stream function: 2

2
V y
h

ψ =  (1) 

We solve Eq. 1 for y as a function of ψ so that we can plot streamlines, 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
x (in) 

y 
(in) 

ψ = 0 
ψ = 0.05 
ψ = 0.10 

ψ = 0.50 

 
FIGURE 1 
Streamlines for 2-D Couette flow with 
evenly spaced values of stream function. 
Values of ψ are in units of ft2/s. 

Equation for streamlines: 2hy
V
ψ

=  (2) 

We have taken only the positive root in Eq. 2 for obvious reasons. Along the top wall, 
y = h, and thus 

Stream function along top wall: 
2

top

ft10.0 0.100 ft fts 0.500
2 2

Vhψ
×

= = =
s

 (3) 

The streamlines themselves are straight, flat horizontal lines as seen by Eq. 1. 
We divide ψtop by 10 to generate evenly spaced stream functions. We plot 11 
streamlines in Fig. 1 (counting the streamlines on both walls) by plugging these 
values of ψ into Eq. 2. 
 The streamlines are not evenly spaced. This is because the volume 
flow rate per unit width between two streamlines ψ2 and ψ1 is equal to ψ2 – ψ1. 
The flow speeds near the top of the channel are higher than those near the 
bottom of the channel, so we expect the streamlines to be closer near the top. 
 
Discussion The extent of the x axis in Fig. 1 is arbitrary since the flow is fully 
developed. You can immediately see from a streamline plot like Fig 1 where flow 
speeds are high and low (relatively speaking). 
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9-43 
Solution We are to generate an expression for the stream function along a 
vertical line in a given flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Analysis We start by picking one of the two definitions of the stream function 
(it doesn’t matter which part we choose – the solution will be identical).  

 ( )21
2

dPu y
y dx
ψ

µ
∂

= = −
∂

hy  (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

 ( )
3 21

2 3 2
dP y yh g
dx

ψ
µ

 
= − + 

 
x  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( )v
x
ψ∂ g x′= − = −
∂

 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for velocity component v, the given equation and Eq. 3. We equate 
these and integrate with respect to x to find g(x), 

 ( ) ( ) ( )0           0          v g x g x g x′ ′ C= = − = =  (4) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Finally, plugging Eq. 4 into Eq. 2 yields the final expression for ψ, 

Stream function: 
3 21

2 3 2
dP y yh
dx

ψ
µ

 
= − 

 
C+  (5) 

 We find constant C by employing the boundary condition on ψ. Here, ψ = 0 
along y = 0 (the bottom wall). Thus C is equal to zero by Eq. 5, and 

Stream function: 
3 21

2 3
dP y yh
dx

ψ
µ

 
= − 

 2
 (6) 

 Along the top wall, y = h, and thus 

Stream function along top wall: 3
top

1
12

dP h
dx

ψ
µ

= −  (7) 

 
Discussion The stream function of Eq. 6 is valid not only along the vertical 
dashed line of Fig. P9-43, but everywhere in the flow since the flow is fully 
developed and there is nothing special about any particular x location. 
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9-44 
Solution We are to generate an expression for the volume flow rate per unit 
width for fully developed channel flow. We are to compare results from two methods 
of calculation.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Analysis We integrate the x component of velocity times cross-sectional area to 
obtain volume flow rate,  

 
( )

3 2
2

0
0

3
3

1 1
2 2 3

1 1  
2 6 12

y h
y h

y
A y

dP dP y yV udA y hy Wdy h W
dx dx

dP h dPW h W
dx dx

µ µ

µ µ

2

=
=

=
=

  
= = − = −  

   

 
= − = − 

 

∫ ∫
 (1) 

where W is the width of the channel into the page of Fig. P9-43. On a per unit width 
basis, we divide Eq. 1 by W to get 

Volume flow rate per unit width: 31
12

V d h
W dµ

= −
P
x

 (2) 

 The volume flow rate per unit width between any two streamlines ψ2 and ψ1 
is equal to ψ2 – ψ1. We take the streamlines representing the top wall and the bottom 
wall of the channel. Using the result from Problem 9-43, 

Volume flow rate per unit width:

 3 3
top bottom

1 10
12 12

V dP h h
W dx

ψ ψ
µ µ

= − = − − = −
dP
dx

 (3) 

Equations 2 and 3 agree, as they must. 
 
Discussion The integration of Eq. 1 can be performed at any x location in the 
channel since the flow is fully developed. 
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9-45 
Solution We are to plot several streamlines using evenly spaced values of ψ 
and discuss the spacing between the streamlines.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 The flow is fully developed. 
 
Properties The viscosity of water at T = 20oC is 1.002 × 10-3 kg/(m⋅s). 
 
Analysis The stream function is obtained from the result of Problem 9-43, 

Stream function: 
3 21

2 3
dP y yh
dx

ψ
µ

 
= − 

 2
 (1) 

We need to solve Eq. 1 (a cubic equation) for y as a function of ψ so that we can plot 
streamlines. First we re-write Eq. 1 in standard cubic form, 

0
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0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
x (mm) 

y 
(mm) 

ψ = 0 ψ = 0.0002874 

ψ = ψtop = 0.002874 

 
FIGURE 1 
Streamlines for 2-D channel flow with 
evenly spaced values of stream function. 
Values of ψ are in units of m2/s. 

Standard cubic form: 3 23 6 0
2 /
hy y

dP dx
µψ

− − =  (2) 

We can either look up the solution for cubic equations or use Newton’s iteration 
method to obtain y for a given value of ψ. In general there are three roots – we choose 
the positive real root with 0 < y < h, which is the only one that has physical meaning 
for this problem. Along the top wall, y = h, and Eq. 1 yields 

Stream function along top wall:

 ( ) ( )( )33 3
top 23

3 2

1 1 20,000 N/m 0.00120 m
12 s N12 1.002 10  kg/m s

     2.874 10  m /s

dP h
dx

ψ
µ −

−

kg m⋅ = − =  × ⋅  

= ×

 

The streamlines themselves are straight, flat horizontal lines as seen by Eq. 1. 
We divide ψtop by 10 to generate evenly spaced stream functions. We plot 11 
streamlines in Fig. 1 (counting the streamlines on both walls) by plugging these 
values of ψ into Eq. 2 and solving for y. 
 The streamlines are not evenly spaced. This is because the volume 
flow rate per unit width between two streamlines ψ2 and ψ1 is equal to ψ2 – ψ1. 
The flow speeds in the middle of the channel are higher than those near the top 
or bottom of the channel, so we expect the streamlines to be closer near the 
middle. 
 
Discussion The extent of the x axis in Fig. 1 is arbitrary since the flow is fully 
developed. You can immediately see from a streamline plot like Fig 1 where flow 
speeds are high and low (relatively speaking). 
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9-46 
Solution We are to calculate the volume flow rate and average speed of air 
being sucked through a sampling probe.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional. 
 
Analysis For 2-D incompressible flow the difference in the value of the stream 
function between two streamlines is equal to the volume flow rate per unit width 
between the two streamlines. Thus, 

Volume flow rate through the sampling probe:

 ( ) ( )
2m0.150 0.105 0.052 m

su lV W Wψ ψ× = − × = − × = 30.00234 m /s  (1) 

The average speed of air in the probe is obtained by dividing volume flow rate by 
cross-sectional area, 

Average speed through the sampling probe:

 
( )( )

3

avg
0.00234 m /s

0.0045 m 0.052 m
VV

hW
= = = 10.0 m/s  (2) 

 
Discussion Notice that the streamlines inside the probe are more closely packed 
than are those outside the probe because the flow speed is higher inside the probe. 

  
 
 
9-47 
Solution We are to sketch streamlines for the case of a sampling probe with too 
little suction, and we are to name this type of sampling and label the lower and upper 
dividing streamlines. 
 

Vfreestream  V  

Sampling probe 
Dividing streamlines 

ψ = ψl 

ψ = ψu 

h 

Vavg  
 

FIGURE 1 
Streamlines for subisokinetic sampling. 

Analysis If the suction were too weak, the volume flow rate through the probe 
would be too low and the average air speed through the probe would be lower than 
that of the air stream. The dividing streamlines would diverge outward rather than 
inward as sketched in Fig. 1. We would call this type of sampling subisokinetic 
sampling. 
 
Discussion We have drawn the streamlines inside the probe further apart than 
those in the air stream because the flow speed is lower inside the probe. 
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9-48 
Solution We are to calculate the speed of the air stream of Fig. P9-46.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional. 
 
Analysis We use the result of Problem 9-49 with constant C set to zero for 
convenience. In the air stream far upstream of the probe, 

Volume flow rate per unit width:

 (freestream freestreamu l u l u l
V V y V y V y y
W

ψ ψ ∞= − = − = − )  (1) 

By definition of streamlines, the volume flow rate between the two dividing 
streamlines must be the same as that through the probe itself. We know the volume 
flow rate through the probe from the results of Problem 9-46. The value of the stream 
function on the lower and upper dividing streamlines are the same as those of 
Problem 9-46, namely ψl = 0.105 m2/s and ψu = 0.150 m2/s respectively. We also 
know yu – yl from the information given here. Thus, Eq. 1 yields 

Freestream speed: 
( )

( )
2

freestream

m0.150 0.105
s

0.0058 m
u l

u l

V
y y
ψ ψ −−

= = =
−

m7.76
s

 (2) 

 
Discussion We verify by these calculations that the sampling is superisokinetic 
(average speed through the probe is higher than that of the upstream air stream). 

  
 
 
9-49 
Solution For a given velocity field we are to generate an expression for ψ, and 
we are to calculate the volume flow rate per unit width between two streamlines.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis We start by picking one of the two definitions of the stream function 
(it doesn’t matter which part we choose – the solution will be identical).  

 u V
y
ψ∂

= =
∂

 (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

 ( )Vy g xψ = +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 
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 ( )v
x
ψ∂ g x′= − = −
∂

 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for velocity component v, the given equation and Eq. 3. We equate 
these and integrate with respect to x to find g(x), 

 ( ) ( ) ( )0           0          v g x g x g x′ ′ C= = − = =  (4) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Finally, plugging Eq. 4 into Eq. 2 yields the final expression for ψ, 

Stream function: Vy Cψ = +  (5) 

 Constant C is arbitrary; it is common to set it to zero, although it can be set 
to any desired value. Here, ψ = 0 along the streamline at y = 0, forcing C to equal zero 
by Eq. 5. For the streamline at y = 0.5 m, 

Value of ψ2: ( )
2

2
m m8.9 0.5 m 4.45
s s

ψ  = × = 
 

 (6) 

The volume flow rate per unit width between streamlines ψ2 and ψ0 is equal to ψ2 – 
ψ0, 

Volume flow rate per unit width: ( )
2

2 0
m4.45 0
s

V
W

ψ ψ= − = − =
2m4.45

s
 (7) 

We verify our result by calculating the volume flow rate per unit width from first 
principles. Namely, volume flow rate is equal to speed times cross-sectional area, 

Volume flow rate per unit width:

 ( ) ( )2 0
m8.9 0.5 0  m
s

V V y y
W

= − = × − =
2m4.45

s
 (8) 

 
Discussion If constant C were some value besides zero, we would still get the 
same result for the volume flow rate since C would cancel out in the subtraction. 
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9-50E 
Solution For a given velocity field we are to generate an expression for ψ and 
plot several streamlines for given values of constants a and b.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane, implying that w = 0 and neither u nor v depend on z. 
 
Analysis We plug the given equation into the steady incompressible continuity 
equation, 

Condition for incompressibility: 

2ax by

v u w
y x z

−

∂ ∂ ∂
= − −

∂ ∂ ∂
0

          2v ax by
y
∂

= − +
∂

  

Next we integrate with respect to y. Note that since the integration is a partial 
integration, we must add some arbitrary function of x instead of simply a constant of 
integration. 

y component of velocity: ( )
2

2
2

byv axy f x= − + +   

If the flow were three-dimensional, we would add a function of x and z instead. We 
are told that v = 0 for all values of x when y = 0. This is only possible if f(x) = 0. Thus, 

y component of velocity: 
2

2
2

byv axy= − +  (1) 

 To obtain the stream function, we start by picking one of the two parts of the 
definition of the stream function,  

 2u ax bxy
y
ψ∂

= = −
∂

  

Next we integrate the above equation with respect to y, noting that this is a partial 
integration and we must add an arbitrary function of the other variable, x, rather than 
a simple constant of integration. 

 ( )
2

2

2
bxyax y g xψ = − +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( )
2

2
2

byv axy
x
ψ∂ g x′= − = − + −
∂

 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for velocity component v, Eq. 1 and Eq. 3. We equate these and 
integrate with respect to x to find g(x), 

 ( ) ( )0          g x g x′ = = C  (4) 
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Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. But C must be zero in order for ψ to be zero for any value of x 
when y = 0. Finally, Eq. 2 yields the final expression for ψ, 

Solution: 
2

2

2
bxyax yψ = −  (5) 

 To plot the streamlines, we note that Eq. 5 represents a family of curves, one 
unique curve for each value of the stream function ψ. We solve Eq. 5 for y as a 
function of x. A bit of algebra (the quadratic rule) yields 

Equation for streamlines: 
2 2 4 2ax a x bx

y
bx

ψ± −
=  (6) 

For the given values of constants a and b, we plot Eq. 6 for several values of ψ in Fig. 
1; these curves of constant ψ are streamlines of the flow. Note that both the positive 
and negative roots of Eq. 6 are required to plot each streamline. The direction of the 
flow is found by calculating u and v at some point in the flow field. We pick x = 2 ft, 
y = 2 ft, where u = −1.2 ft/s and v = −2.1 ft/s. This indicates flow to the lower left near 

is location. We fill in the rest of the arrows in Fig. 1 to be consistent. We see that 
the flow enters from the upper right, and splits into two parts – one to the lower right 
and one to the upper left. 

th

 
Discussion It is always a good idea to check your algebra. In this example, you 
should differentiate Eq. 5 to verify that the velocity components of the given equation 
are obtained. 
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FIGURE 1 
Streamlines for the velocity field of Problem 
9-50E; the value of constant ψ is indicated 
for each streamline in units of ft2/s. 
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9-51 
Solution For a given velocity field we are to generate an expression for ψ.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis We start by picking one of the two definitions of the stream function 
(it doesn’t matter which part we choose – the solution will be identical).  

 cosu V
y
ψ α∂

= =
∂

 (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

 ( )cosyV g xψ α= +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( )v
x
ψ∂ g x′= − = −
∂

 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for velocity component v, the given equation and Eq. 3. We equate 
these and integrate with respect to x to find g(x), 

 ( ) ( ) ( )sin           sin           sinv V g x g x V g x xV Cα α′ ′ α= = − = − = − +  (4) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Finally, plugging Eq. 4 into Eq. 2 yields the final expression for ψ, 

Stream function: ( )cos sinV y x Cψ α α= − +  (5) 

 Constant C is arbitrary; it is common to set it to zero, although it can be 
set to any desired value. 
  
Discussion You can verify by differentiating ψ that Eq. 5 yields the correct values 
of u and v. 
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Solution For a given stream function, we are to calculate the velocity 
components and verify incompressibility.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible (this assumption is 
to be verified). 3 The flow is two-dimensional in the x-y plane, implying that w = 0 
and neither u nor v depend on z. 
 
Analysis (a) We use the definition of ψ to obtain expressions for u and v. 

Velocity components: 2           2u bx cy v ax
y x
ψ ψ∂ ∂ by= = + = − = − −
∂ ∂

 (1) 

 

(b) We now check if the incompressible continuity equation in the x-y plane is 
satisfied by the velocity components of Eq. 1, 

Incompressible continuity: 

b b

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0

0          0b b= − =  (2) 

We conclude that the flow is indeed incompressible. 
 
Discussion Since ψ is a smooth function of x and y, it automatically satisfies the 
continuity equation by its definition. Equation 2 confirms this. If it did not, we would 
go back and look for an algebra mistake somewhere. 
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CD-EES 9-53 
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FIGURE 1 
Streamlines for Problem 9-53. Values of ψ 
are in units of m2/s. 

Solution We are to plot several streamlines for a given velocity field.  
 
Analysis We re-write the stream function equation of Problem 9-52 with all the 
terms on one side, 

  2 2 0cy bxy ax ψ+ + − = (1) 

For any constant value of ψ (along a streamline), Eq. 1 is in a form that enables us to 
use the quadratic rule to solve for y as a function of x, 

Equation for a streamline: 
( )2 2 24

2

bx b x c ax
y

c

ψ− ± − −
=  (2) 

We plot the streamlines in Fig. 1. For each value of ψ there are two curves – one for 
the positive root and one for the negative root of Eq. 2. There is symmetry about a 
diagonal line through the origin. The streamlines appear to be hyperbolae. We 
determine the flow direction by plugging in a couple values of x and y and calculating 
the velocity components; e.g., at x = 1 m and y = 3 m, u = 2.7 m/s and v = 4.9 m/s. 
The flow at this point is in the upper right direction. Similarly, at x = 1 m and y = -2 
m, u = -3.3 m/s and v = -1.6 m/s. The flow at this point is in the lower left direction. 
 
Discussion This flow may not represent any particular physical flow field, but it 
produces an interesting flow pattern. 
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Solution For a given stream function, we are to calculate the velocity 
components and verify incompressibility.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane, implying that w = 0 and neither u nor v depend on z. 
 
Analysis (a) We use the definition of ψ to obtain expressions for u and v. 

Velocity components: 2           2u by dx v ax c
y x
ψ ψ∂ ∂ dy= = − + = − = − − −
∂ ∂

 (1) 

 

(b) We now check if the incompressible continuity equation in the x-y plane is 
satisfied by the velocity components of Eq. 1, 

Incompressible continuity: 

d d

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0

0          0d d= − =  (2) 

We conclude that the flow is indeed incompressible. 
 
Discussion Since ψ is a smooth function of x and y, it automatically satisfies the 
continuity equation by its definition. Eq. 2 confirms this. If it did not, we would go 
back and look for an algebra mistake somewhere. 

  
 
 
9-55 
Solution We are to make up a stream function ψ(x,y), calculate the velocity 
components and verify incompressibility.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis Every student should have a different stream function. He or she then 
takes the derivatives with respect to y and x to find u and v. The student should then 
plug his/her velocity components into the incompressible continuity equation. 
Continuity will be satisfied regardless of ψ(x,y), provided that ψ(x,y) is a smooth 
function of x and y. 
 
Discussion As long as ψ is a smooth function of x and y, it automatically satisfies 
the continuity equation by its definition. 
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Solution We are to calculate the percentage of flow going through one branch 
of a branching duct.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis For 2-D incompressible flow the difference in the value of the stream 
function between two streamlines is equal to the volume flow rate per unit width 
between the two streamlines. Thus, 

Main branch: ( )
2 2

upper wall lower wall
main

m m4.15 2.03 2.12
s s

V
W

ψ ψ


= − = − =


 (1) 

Similary, in the upper branch, 

Upper branch: ( )
2 2

upper wall branch wall
upper

m m4.15 2.80 1.35
s s

V
W

ψ ψ


= − = − =


 (2) 

On a percentage basis, 

Percentage of volume flow through the upper branch:

 

2

upper upper
2

main

main

m1.35
s 0.637

m2.12
s

V
WV

V V
W





= = = =




63.7%  (3) 

 
Discussion No dimensions are given, so it is not possible to calculate velocities. 
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Solution We are to calculate duct height h for a given average velocity through 
a duct and values of stream function along the duct walls. 
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 

Analysis The volume flow rate through the main branch of the duct is equal to 
the average velocity times the cross-sectional area of the duct, 

Volume flow rate: avgV V Wh=  (1) 

We solve for h in Eq. 1, using the results of Problem 9-56, 

Duct height: 
2

avg main

1 1 m 100 cm2.12
m s m11.4
s

Vh
V W

  = = × =    
18.6 cm  (2) 

 An alternative way to solve for height h is to assume uniform flow in the 
main branch, for which ψ = Vavgy. We take the difference between ψ at the top of the 
duct and ψ at the bottom of the duct to find h, 

  ( )upper wall lower wall avg upper wall avg lower wall avg upper wall lower wall avgV y V y V y y V hψ ψ− = − = − =  

Thus, 

Duct height: 
( )

2

upper wall lower wall

avg

m4.15 2.03 100 cms
m m11.4
s

h
V

ψ ψ −−  = = = 
 

18.6 cm  (3) 

You can see that we get the same result as that of Eq. 2. 
 

Discussion The result is correct even if the velocity profile through the duct is not 
uniform, since we have used the average velocity in our calculations. 

  
 

9-58 
Solution We are to verify that the given ψ satisfies the continuity equation, and 
we are to discuss any restrictions. 
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric (ψ is a function of r and z only). 
 
Analysis We plug the given velocity components into the axisymmetric 
continuity equation, 

 
( ) ( ) 2 2

1
1 1 1 0r zru u z r r
r r z r r z r r z z r

ψ ψ
ψ ψ

∂ ∂   ∂ − ∂   ∂ ∂  ∂ ∂∂ ∂   + = + = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
=   

Thus we see that continuity is satisfied by the given stream function. The only 
restriction on ψ is that ψ must be a smooth function of r and z. 
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Discussion For a smooth function of two variables, the order of differentiation 
does not matter. 

  
 
 
9-59 
Solution We are to determine the value of the stream function along the 
positive y axis and the negative x axis for the case of a line source at the origin.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis For 2-D incompressible flow the difference in the value of the stream 
function between two streamlines is equal to the volume flow rate per unit width 
between the two streamlines. Let us take the arc of the circle of radius r between the 
positive x axis and the positive y axis of Fig. P9-59. The volume flow rate per unit 
width through this arc is one-fourth of V / L , the total volume flow rate per unit 
width, since the arc spans exactly one-fourth of the circumference of the circle. 

 positive  axis positive  axis
1
4y x

V
L

ψ ψ− =  (1) 

Since ψ = 0 along the positive x axis, we conclude that 

ψ along positive y axis: positive  axis
1
4y

V
L

ψ =  (2) 

Similarly, the volume flow rate through the top half of the circle is half of the total 
volume flow rate and we conclude that 

ψ along negative x axis: negative  axis
1
2y

V
L

ψ =  (3) 

 
Discussion Some CFD codes use ψ as a variable, and we thus need to specify the 
value of ψ along boundaries of the computational domain. Simple calculations such 
as this are useful in these situations. 
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Solution We are to determine the value of the stream function along the 
positive y axis and the negative x axis for the case of a line sink at the origin.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis Everything is the same as in Problem 9-59 except that the flow 
direction is reversed everywhere. The volume flow rate per unit width through the arc 
of radius r between the positive x axis and the positive y axis of Fig. P9-59 is now 
negative one-fourth of V / L  since the flow is now mathematically negative. 

 positive  axis positive  axis
1
4y x

V
L

ψ ψ− = −  (1) 

Since ψ = 0 along the positive x axis, we conclude that 

ψ along positive y axis: positive  axis
1
4y

V
L

ψ = −  (2) 

Similarly, the volume flow rate through the top half of the circle is half of the total 
volume flow rate and is negative. We conclude that 

ψ along negative x axis: negative  axis
1
2x

V
L

ψ = −  (3) 

 
Discussion We need to be careful of the sign of ψ. 
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Solution We are to generate an expression for the stream function that 
describes a given velocity field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric (ψ is a function of r and z only). 
 
Analysis The r and z velocity components from Problem 9-34 are 

Velocity field: ,exit ,entrance ,exit ,entrance
,entrance     

2
z z z z

r z z

u u u uru u u
L L
− −

= − = + z  (1) 

To generate the stream function we use the definition of ψ for steady, incompressible, 
axisymmetric flow, 

Axisymmetric stream function: 1 1          r zu u
r z r r
∂ ∂

= − =
∂ ∂
ψ ψ  (2) 

We choose one of the definitions of Eq. 2 to integrate. We pick the second one, 

Integration: 

,exit ,entrance
,entrance

2
,exit ,entrance

,entrance  ( )
2

z z
z z

z z
z

u u
ru dr r u z dr

L

u ur u z
L

ψ
− 

= = + 
 

− 
= + + 

 

∫ ∫

f z
 (3) 

We added a function of z instead of a constant of integration since this is a partial 
integration. Now we take the z derivative of Eq. 3 and use the other half of Eq. 2, 

Differentiation: ,exit ,entrance1 1 ( )
2

z z
r

u uru f
r z L r

ψ −∂ z′= − = − −
∂

 (4) 

We equate Eq. 4 to the known value of ur from Eq. 1, 

Comparison:

 ,exit ,entrance ,exit ,entrance1 ( )      or     ( ) 0
2 2

z z z z
r

u u u ur ru f z
L r L
− −

′ ′f z= − − = − =  (5) 

Since f is a function of z only, integration of Eq. 5 yields f(z) = constant. The final 
result is thus 

Stream function: 
2

,exit ,entrance
,entrance constant

2
z z

z

u ur u z
L

ψ
− 

= + + 
 

 (6) 

 
Discussion The constant of integration can be any value since velocity 
components are determined by taking derivatives of the stream function. 
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CD-EES 9-62E 
Solution We are to calculate the axial speed at the entrance and exit of the 
nozzle, and we are to plot several streamlines for a given axisymmetric flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric (ψ is a function of r and z only). 
 
Analysis (a) Since uz is not a function of radius, the axial velocity profile across 
a cross section of the nozzle is uniform. (This is consistent with the assumption that 
frictional effects along the nozzle walls are neglected.) Thus, at any cross section the 
axial speed is equal to the volume flow rate divided by cross-sectional area, 

Entrance axial speed:

 
( )

23

,entrance 2 2
entrance

gal4 2.04 0.1337 ft 12 in minmin
gal ft 60 s0.50 in

z
Vu

Dπ π

×     = = =    
    

ft3.268
s

 
(1) 

Similarly, 
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FIGURE 1 
Streamlines for flow through an 
axisymmetric garden hose nozzle. Note that 
the vertical axis is highly magnified. 

Exit axial speed: ,exit 2
exit

4
z

Vu
Dπ

= =
ft41.69
s

 (2) 

 

(b) We use the stream function developed in Problem 9-61. Setting the constant to 
zero for simplicity, we have 

Stream function: 
2

,exit ,entrance
,entrance2

z z
z

u ur u z
L

ψ
− 

= + 
 

 (3) 

We solve Eq. 3 for r as a function of z and plot several streamlines in Fig. 1, 

Streamlines: 
,exit ,entrance

,entrance

2
z z

z

r
u u

u z
L

ψ
= ±

−
+

 (4) 

At the nozzle entrance (z = 0), the wall is at r = Dentrance/2 = 0.25 inches. Eq. 3 yields 
ψwall = 0.0007073 ft3/s for the streamline that passes through this point. This 
streamline thus represents the shape of the nozzle wall, and we have designed the 
nozzle shape. 
 
Discussion You can verify that the diameter between the outermost streamlines 
varies from Dentrance to Dexit. 
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Solution We are to discuss the sign of the stream function in a separation 
bubble, and determine where ψ is a minimum.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 
 
Analysis For 2-D incompressible flow the difference in the value of the stream 
function between two streamlines is equal to the volume flow rate per unit width 
between the two streamlines. For example, ψupper – ψ0 is positive and represents the 
volume flow rate per unit width between the wall and the uppermost streamline, The 
flow between these two streamlines is to the right. Likewise, the difference between ψ 
along the dividing streamline and ψ = ψ1 along a streamline in the upper part of the 
separation bubble must also be positive as sketched in Fig. 1. The arc-shaped dividing 
streamline divides fluid within the separation bubble from fluid outside of the 
separation bubble. The stream function along this dividing streamline must be zero 
since it intersects the wall where ψ = 0. The only way we can have flow to the right in 
the upper part of the separation bubble is if ψ1 is negative (Fig. 1). We conclude that 
for this problem, all streamlines within the separation bubble have negative 
values of stream function. 

  ψ = 0 

 ψ = 0 

 ψ = ψ1 

 ψ < 0 

Minimum ψ  
 

FIGURE 1 
Close-up of streamlines near the separation 
bubble. The minimum value of the stream 
function occurs in the middle of the 
separation bubble.  The minimum value of ψ occurs in the center of the separation bubble 

as sketched in Fig. 1. 
 
Discussion We cannot conclude that ψ is always negative within a separation 
bubble, since we can add any arbitrary constant to all the ψ values, and it will not 
change the flow. 

  
 
 
9-64 
Solution We are to discuss how someone can interpret the relative speed of a 
flow based solely on contours of constant stream function.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 
 
Analysis For 2-D incompressible flow the difference in the value of the stream 
function between two streamlines is equal to the volume flow rate per unit width 
between the two streamlines. Thus, if the streamlines are very close together, the 
speed of the fluid between them is large relative to locations where the same two 
streamlines are far apart. Professor Flows noticed a region in which the 
streamlines were very close together, implying high relative speed in that region 
of the flow. 
 
Discussion If the values of ψ on the contour plot are labeled, we can actually infer 
the fluid speed by measuring the distance between streamlines. 
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Solution For the given set of streamlines, we are to discuss how we can tell the 
relative speed of the fluid. 
 

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric. 
 

Analysis As with 2-D flow, when streamlines that are initially equally 
spaced spread away from each other, it indicates that the flow speed has 
decreased in that region. Likewise, if the streamlines come closer together, the 
flow speed has increased in that region. In Fig. P9-65 we can infer that the flow 
far upstream of the plate is straight and uniform, since the streamlines are 
parallel. The fluid decelerates as it approaches the front face of the cylinder, 
especially near the stagnation point, as indicated by the wide gap between 
streamlines. The flow accelerates rapidly to very high speeds around the corner 
of the cylinder as indicated by the tightly spaced streamlines there. The flow is 
seen to separate on top of the cylinder. Since the streamlines are very sparse in 
this region, we infer that the fluid moves relatively slowly inside the 
separation bubble. 
 

Discussion Such analyses in axisymmetric flow fields are more difficult than 
those in 2-D planar flow fields because streamlines of equally spaced stream function 
are not spaced equally apart in a uniform axisymmetric flow field. This is due to the 
fact that the cross-sectional area between streamlines increases with radius (a factor of 
2πr is introduced). Nevertheless, we can still tell where the flow speeds up and slows 
down in this example. 

  
 

9-66E 
Solution We are to interpret a streamline plot by determining the direction of 
flow and by estimating the speed of the flow at a point.  
 

Assumptions 1 The flow is steady. 2 The flow is incompressible 3 The flow is two-
dimensional. 
 

Analysis (a) We must tilt our heads nearly upside down to see an increase in 
stream function ψ in the mathematically positive manner. In other words, since ψ 
increases in the downward direction, the flow is to the lower left, following our left 
side rule. Arrows are drawn in Fig. 1. 

P 
h 

 
 

FIGURE 1 
Streamlines with direction shown. 

 

(b) For 2-D incompressible flow the difference in the value of the stream function 
between two streamlines is equal to the volume flow rate per unit width between the 
two streamlines. We approximate the flow as uniform between the two labeled 
streamlines in Fig. P9-66. The speed at point P is thus 

 ( ) ( )
2

P 1 2
1 1 1 ft 12 in0.45 0.32

2.0 in s ft
V VV

Wh h W h
ψ ψ  ≈ = = − = − = 

 

ft0.78
s

 (1) 

 

(c) Nowhere did we use any property of the fluid, so changing to water does not 
change our result. For either air or water (or any incompressible fluid), VP = 0.78 
ft/s. 
 
Discussion Streamlines and stream functions are kinematic properties, as 
discussed in Chap. 4. That is why fluid density, viscosity, etc. are irrelevant here. 
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9-67 
Solution We are to find the primary dimensions and primary units of the 
compressible stream function. 
 
Analysis From the given definition, we see that ψρ is the product of a density, a 
velocity, and a length, 

Primary dimensions of ψρ: { } 3

mass length mlength
time Ltlengthρψ

   = × × =   
  

  

The primary units of ψρ are kg/(m⋅s) (SI) and lbm/(ft s) (English).  
 
Discussion Ironically, although the stream function is often applied to potential 
flows where viscosity is not a parameter, ψρ has the same units as µ. 
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9-68 
Solution We are to generate an expression for the compressible stream function 
for a given flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We start by picking one of the two definitions of the compressible 
stream function (it doesn’t matter which part we choose – the solution will be 
identical).  

 ( )( ) ( ) 2
1 1 1 1 1 1u uu C x u C x u C u C x C C

y
ρ

ρ ρ

ψ
ρ ρ ρ ρ

∂
= = + + = + + +

∂ u xρ  (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

 ( ) ( )2
1 1 1 1u uu y C u C xy C C x y g xρ ρ ρψ ρ ρ= + + + +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( ) ( )1 1 2u uv C u C y C C xy
x
ρ

ρ ρ

ψ
ρ ρ

∂
g x′− = = + + +

∂
 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for −ρv, Eq. 3 and the value computed from the known density and 
velocity, i.e. 

  ( )1 1 2u uv C u C y C Cρ ρρ ρ− = + − xy (4) 

We equate Eqs. 3 and 4 and integrate with respect to x to find g(x), 

 ( ) ( )0          g x g x′ = = C  (5) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Plugging Eq. 5 into Eq. 2 yields 

 ( ) 2
1 1 1 1u uu y C u C xy C C x y Cρ ρ ρψ ρ ρ= + + + +  (6) 

 We determine constant C by setting ψρ = 0 at y = 0 in Eq. 6, yielding C 
= 0. Thus the final expression for the compressible stream function is 
  

Compressible stream function: ( ) 2
1 1 1 1u uu y C u C xy C C x yρ ρψ ρ ρ= + + + ρ  (7) 

 
Discussion You can verify by differentiating ψρ that Eq. 7 yields the correct 
values of u and v. 
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9-69 
Solution We are to generate an expression for the compressible stream function 
for a given flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Analysis We start by picking one of the two definitions of the compressible 
stream function (it doesn’t matter which part we choose – the solution will be 
identical).  

 ( )( ) ( ) 2
1 1 1 1 1 1u uu C x u C x u C u C x C C

y
ρ

ρ ρ

ψ
ρ ρ ρ ρ

∂
= = + + = + + +

∂ u xρ  (1) 

Next we integrate Eq. 1 with respect to y, noting that this is a partial integration and 
we must add an arbitrary function of the other variable, x, rather than a simple 
constant of integration. 

0

0.5

1

1.5

2

0 0.5 1 1.5 2
x 

y 

Top wall, 
kg204
m sρψ =  

Symmetry line, ψρ = 0  
 

FIGURE 1 
Streamlines for the diverging duct of 
Problem 9-69. 

 ( ) ( )2
1 1 1 1u uu y C u C xy C C x y g xρ ρ ρψ ρ ρ= + + + +  (2) 

Now we choose the other part of the definition of ψ, differentiate Eq. 2, and rearrange 
as follows: 

 ( ) ( )1 1 2u uv C u C y C C xy
x
ρ

ρ ρ

ψ
ρ ρ

∂
g x′− = = + + +

∂
 (3) 

where g′(x) denotes dg/dx since g is a function of only one variable, x. We now have 
two expressions for −ρv, Eq. 3 and the value computed from the known density and 
velocity, i.e. 

  ( )1 1 2u uv C u C y C Cρ ρρ ρ− = + − xy (4) 

We equate Eqs. 3 and 4 and integrate with respect to x to find g(x), 

 ( ) ( )0          g x g x′ = = C  (5) 

Note that here we have added an arbitrary constant of integration C since g is a 
function of x only. Plugging Eq. 5 into Eq. 2 yields 

 ( ) 2
1 1 1 1u uu y C u C xy C C x y Cρ ρ ρψ ρ ρ= + + + +  (6) 

 We determine constant C by setting ψρ = 0 at y = 0 in Eq. 6, yielding C 
= 0. Thus the final expression for the compressible stream function is 
  

Compressible stream function: ( ) 2
1 1 1 1u uu y C u C xy C C x yρ ρψ ρ ρ= + + + ρ  (7) 

We solve Eq. 7 for y as a function of x and ψρ so that we can plot streamlines, 

Equation for plotting streamlines: 
( ) 2

1 1 1 1u u

y
u C u C x C C

ρ

ρ ρ

ψ

ρ ρ
=

+ + + x
 (8) 

We plot Eq. 8 in Fig. 1 for several values of ψρ, using the values of constants u1, ρ1, 
Cu, and Cρ given in Problem 9-21. The agreement with the streamlines of Problem 9-
21 is excellent. 
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 The streamline starting at x = 0, y = 0.8 m is the top wall of the duct. 
Therefore the value of ψρ at the top wall of the diverging duct is found be setting at x 
= 0 and y = 0.8 m,  

ψρ at the top wall: ( ), top 1 1 3

kg m0.85 300 0.8 m
sm

u yρψ ρ   = = =   ⋅  

kg204
m s

 (9) 

 
Discussion You can verify by differentiating ψρ that Eq. 9 yields the correct 
values of u and v. 
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9-70 
Solution We are to interpret a streamline plot by determining the direction of 
flow and by estimating the speed of the flow at a point.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible 3 The flow is two-
dimensional. 
 
Analysis (a) We can tell the direction of the flow by whether ψρ increases or 
decreases in the vertical direction (left side rule). We see that at points A and B the 
flow is to the right. Furthermore, since the streamlines near point B are somewhat 
further apart than those near point A (by a factor of about 1.6), the speed at point A is 
a factor of about 1.6 greater than that at point B. Arrows are drawn in Fig. 1. 
 

FIGURE 1 
Relative velocity vectors added to Fig. P9-
70 at points A and B. 

1.70 A

1.62 

c 

1.60 

1.64 

1.66 

1.68 

1.71 

1.63 

1.61 

1.65 

1.67 

1.69 

B

 
 
In terms of lift, it is obvious that the flow speeds near the upper surface of the 
hydrofoil are greater than those near the lower surface. From the Bernoulli equation 
we know that low speeds lead to (relatively) higher pressures; thus the pressure on the 
lower half of the hydrofoil is greater than that on the upper half, leading to lift. 
 

(b) For 2-D incompressible flow the difference in the value of the stream function 
between two streamlines is equal to the volume flow rate per unit width between the 
two streamlines. We approximate the flow as uniform between the two streamlines 
that enclose point A in Fig. P9-70. By measurement with a ruler, we find that the 
distance δ between streamlines 1.65 and 1.66 is about 0.034c, or about (0.034)(9.0 
mm) = 0.306 mm. The speed at point A is thus 

 
( )

( )

A 1.66 1.65

2

3

1 1

1 m m    1.66 1.65 32.7
s s0.306 10  m

V VV
W W

ψ ψ
δ δ δ

−

≈ = = −

= − =
×

m33.
s

≅

 

We give our answer to only two significant digits here because of the difficulty of 
measuring the distance between the two streamlines. 
 
Discussion Students’ answers may vary somewhat depending on how accurately 
they measure the distance between streamlines. Values between 30 and 40 m/s are 
reasonable. 
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9-71 
Solution We are to interpret a streamline plot by determining the direction of 
flow and by estimating the speed of the flow at a point.  
 
Assumptions 1 The flow is steady (time-averaged). 2 The flow is incompressible 3 
The flow is two-dimensional. 
 
Properties The density of air at T = 20oC is 1.18 kg/m3. 

1 
A 

2 
h 

h 

3 4 6 10 B 

 
 

FIGURE 1 
Relative velocity vectors added to Fig. P9-
71 at points A and B. 

 
Analysis (a) We can tell the direction of the flow by whether ψρ increases or 
decreases in the vertical direction (left side rule). We see that at point A, the flow is to 
the left, while at point B the flow is to the right. Furthermore, since the streamlines 
near point B are much closer together than those near point A (by a factor of about 
five), the speed at point B is a factor of about five greater than that at point A. Arrows 
are drawn in Fig. 1. 
 

(b) For 2-D incompressible flow the difference in the value of the compressible 
stream function between two streamlines is equal to the mass flow rate per unit width 
between the two streamlines. We approximate the flow as uniform between the two 
streamlines that enclose point B in Fig. P9-71. By measurement with a ruler, we find 
that the distance δ between streamlines 5 and 6 is about h/10, or about 0.10 m. The 
speed at point B is thus 

 

( )
( )

( )B 6 5

3

1 1 1 kg6 5
kg m s1.18 0.10 m
m

m mV
W W

ψ ψ
ρ δ ρδ ρδ

≈ = = − = − =
⋅ 

 
 

m8.5
s

 

(1) 

We are only accurate to one digit here because of the difficulty of measuring the 
distance between the two streamlines. We give our final result as VB = 8 or 9 m/s. 
 
Discussion Students’ answers may vary considerably depending on how 
accurately they measure the distance between streamlines. 
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Linear Momentum Equations, Boundary Conditions, and Applications 
 
9-72C 
Solution We are to discuss each term, and write the equation as a word 
equation.  
 
Analysis Term I is the net body force acting on the control volume. Term II 
is the net surface force acting on the control volume. Term III is the net rate of 
change of linear momentum within the control volume. Term IV is the net rate 
of outflow of linear momentum through the control surface. In words, the 
equation can be expressed as: “The total force acting on the control volume is the 
sum of body forces and surface forces, and is equal to the rate at which 
momentum changes within the control volume plus the rate at which momentum 
flows out of the control volume.” 
 
Discussion The dimensions of each term in the equation are those of momentum 
per time. Each term has primary dimensions of {mLt−2}. 

  
 
9-73C 
Solution We are to discuss velocity boundary conditions in a stationary and a 
moving frame of reference for the case of an airplane flying through the air.  
 
Analysis (a) From the stationary frame of reference, V  = Vairplane  on all 
surfaces of the airplane, (no-slip boundary condition). Far from the airplane the air is 
still (V  = 0). 
 

(b) From the reference frame moving with the airplane, V  = 0 on all surfaces of the 
airplane, (no-slip boundary condition). Far from the airplane the air is moving 
towards the airplane at a speed that is opposite the airplane’s speed (V  = −Vairplane ). 
 
Discussion The no-slip condition requires that the fluid velocity equal the 
airplane velocity everywhere on the airplane surface, regardless of the geometry of 
the airplane, and regardless of the frame of reference. 

  
 
9-74C 
Solution We are to describe the constitutive equations and name the equation to 
which they are applied.  
 
Analysis The constitutive equations are relationships between the 
components of the stress tensor and the primary unknowns of the problem, 
namely pressure and velocity. The constitutive equations enable us to write the 
components of the stress tensor in Cauchy’s equation in terms of the velocity field 
and the pressure field. 
 
Discussion Cauchy’s equation by itself is useless without the constitutive 
equations, because we would have too many unknowns for the number of available 
equations.  

  

9-50 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 
9-75C 
Solution We are to define mechanical pressure and discuss its application.  
 
Analysis Mechanical pressure is the mean normal stress acting inwardly on 
a fluid element. For an incompressible fluid, the density is constant and therefore we 
have no equation of state available for calculation of the thermodynamic pressure. In 
fact, thermodynamic pressure cannot even be defined for an incompressible fluid. 
Fluid elements and surfaces still “feel” a pressure, however, and this pressure is the 
so-called mechanical pressure. 
 
Discussion When dealing with incompressible fluid flows, pressure variable P is 
always interpreted as the mechanical pressure Pm.  

  
 
 
9-76C 
Solution We are to discuss the difference between Newtonian fluids and non-
Newtonian fluids, and we are to give examples of each. 
 
Analysis The main distinction between a Newtonian fluid and a non-Newtonian 
fluid is that for flow of a Newtonian fluid, shear stress is linearly proportional to 
shear strain rate, whereas for flow of a non-Newtonian fluid, the relationship 
between shear stress and shear strain rate is nonlinear. 
 There are many examples of Newtonian fluids. Most pure, common liquids 
like water, oil, gasoline, alcohol, etc. are Newtonian. Most gases also behave like 
Newtonian fluids. Non-newtonian fluids include paint, pastes and creams, polymer 
solutions, cake batter, slurries and colloidal suspensions like quicksand, blood, etc. 
 
Discussion The Navier-Stokes equations apply only to Newtonian fluids. For 
non-Newtonian fluids, you would need to insert nonlinear constitutive equations into 
Cauchy’s equations in order to obtain a useful differential equation for conservation 
of linear momentum. 

  
 
 
9-77C 
Solution We are to define or describe each type of fluid. 
 
Analysis  
(a) A viscoelastic fluid is a fluid that returns (either fully or partially) to its 

original shape after the applied stress is released. 
(b) A pseudoplastic fluid is a shear thinning fluid − the more the fluid is 

sheared, the less viscous it becomes. 
(c) A dilatant fluid is a shear thickening fluid − the more the fluid is sheared, 

the more viscous it becomes. 
(d) A Bingham plastic fluid is an extreme type of pseudoplastic fluid that 

requires a finite stress called the yield stress in order for the fluid to flow at 
all. 

 
Discussion All of the above are examples of non-Newtonian fluids. 
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9-78 
Solution We are to generate and discuss velocity and pressure boundary 
conditions for the given flow problem.  
 
Assumptions 1 The flow is steady in the mean. 2 Surface tension effects are 
negligibly small. 
 
Analysis On all tank walls, V  = 0 since the tank walls are stationary (no-slip 
boundary condition). Mathematically, we write ur = uθ = uz = 0 at r = Rtank (the tank 
side walls) and at z = 0 (the bottom wall of the tank). On the blade surfaces, the fluid 
velocity must equal that of the blades (also the no-slip condition). At any radial 
location r the velocity of the blade surface is Vblade r eθω= . In other words uθ = rω at 
the blade surfaces. Since the blades do not move at all in the radial or vertical 
directions, ur = uz = 0 along the blade surfaces. Finally, at the free surface P = Patm 
since the free surface is exposed to atmospheric air. In addition, the vertical 
component of velocity uz must equal zero at the free surface. We note that the other 
two velocity components (ur and uθ) may be non-zero at the free surface, but the shear 
stress in the horizontal plane of the free surface must be zero (negligible shear due to 
the air). Mathematically, ∂ur/∂z = ∂uθ/∂z = 0 at the free surface. 
 
Discussion The no-slip condition requires that uθ = rω everywhere on the blade 
surface, regardless of the geometry of the blades. 

  
 
 
9-79 
Solution We are to generate and discuss velocity and pressure boundary 
conditions for the stirrer flow problem from a rotating frame of reference.  
 
Assumptions 1 The flow is steady in the mean. 2 Surface tension effects are 
negligibly small. 
 
Analysis On all tank walls, Vtank  = 0 from a stationary frame of reference since 
the tank walls are stationary (no-slip boundary condition). From the rotating frame of 
reference however, the tank walls are rotating in the opposite direction of ω. 
Mathematically, we write ur = uz = 0 and uθ = −Rtankω at r = Rtank (the tank side 
walls). At the bottom wall of the tank we write ur = uz = 0 and uθ = −rω at z = 0. 
On the blade surfaces, the fluid velocity must equal that of the blades (also the no-slip 
condition). Since the blades are stationary in this rotating frame of reference, ur = uz = 
uθ = 0 at the blade surfaces. Finally, at the free surface P = Patm since the free 
surface is exposed to atmospheric air. In addition, the vertical component of velocity 
uz must equal zero at the free surface. We note that the other two velocity components 
(ur and uθ) may be non-zero at the free surface, but the shear stress in the horizontal 
plane of the free surface must be zero (negligible shear due to the air). 
Mathematically, ∂ur/∂z = ∂uθ/∂z = 0 at the free surface. 
 
Discussion In this problem the free surface boundary conditions are independent 
of frame of reference. 
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9-80 
Solution We are to generate and discuss velocity and pressure boundary 
conditions for the given flow problem.  
 
Assumptions 1 The flow is steady. 2 Surface tension effects are negligibly small. 
 
Analysis We must satisfy the no-slip boundary condition on all tank walls, 

 = VliquidV tank . Mathematically, we write ur = uz = 0 and uθ = Rω at r = R (the tank 
side walls). We also write ur = uz = 0 and uθ = rω at z = 0 (the bottom wall of the 
tank). We do not specify the pressure along the tank walls. At the free surface P = 
Patm since the free surface is exposed to atmospheric air. In addition, the vertical and 
radial components of velocity uz and ur must equal zero at the free surface, but the 
angular velocity component uθ is set to uθ = rω at the free surface. We also know 
that the shear stress at free surface must be zero (negligible shear due to the air). This 
boundary condition is not needed however since we already know the velocity field. 
In fact, the velocity field is known right from the start since we are told that the liquid 
is in solid body rotation: uz = ur = 0 and uθ = rω everywhere. 
 
Discussion This is a degenerate case of the Navier-Stokes equation since the fluid 
is in solid body rotation. Nevertheless, it is useful to think about the required 
boundary conditions. 

  
 
 
9-81 
Solution We are to compare Eqs. 1 and 2 to see if they are the same or not.  
 
Analysis We use the product rule to differentiate Eq. 1, 

 2

1 1 1r r
r r

u uu urru u
r r r r rr

 ∂ ∂∂ ∂−   = = + + = − +    ∂ ∂ ∂    
θ θ

θ θ θ θτ τ µ µ
θ θ ∂

 (3) 

Thus we see that Eq. 1 and Eq. 2 are equivalent. 
 
Discussion The viscous stress tensor is defined identically in the other texts; the 
terms are simply grouped together in a different fashion. 

  
 
 
9-82 
Solution We are to estimate the volume flow rate of oil between two plates, 
and we are to calculate the Reynolds number.  
 
Assumptions 1 The flow is steady. 2 The oil is incompressible. 3 Since the gap is so 
small compared to the plate dimensions, we assume 2-D flow in the x-y plane. 4 We 
ignore entrance effects and end effects and assume that the flow can be approximated 
as fully developed channel flow everywhere in the gap. 
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Properties The viscosity and density of unused engine oil at T = 60oC are 72.5 × 
10-3 kg/(m⋅s) and 864 kg/m3 respectively. 
 
Analysis The velocity field for fully developed channel flow is 

Velocity components, 2-D channel flow: ( )21        0
2

dPu y hy
dxµ

= − v =  (1) 

We integrate the x component of velocity times cross-sectional area to obtain volume 
flow rate (see also Problem 9-44),  

Volume flow rate: ( )2 3

0

1 1
2 12

y h

y
A

dP dPV udA y hy Wdy h W
dx dxµ µ

=

=
= = − = −∫ ∫  (2) 

The pressure gradient is approximated as 

 
( ) 2

3out in 0 1  atm 101,300 N/m 67,530 N/m
1.5 m atm

P PdP
dx L

−  −
≈ = = − 

 
 (3) 

We plug Eq. 3 into Eq. 2 and solve for the volume flow rate, 

Volume flow rate:

 
( ) ( )3

3 2
3

4 3

1 N67,530 0.0025 m 0.75 m
kg m s12 72.5 10

m s
 9.0966 10  m /s

V
−

−

  = − −      × ⋅ 
= × ≅ -4 39.10×10  m /s

kg m
N



  (4) 

 The average velocity of the oil through the channel is 

Average velocity:

 
( ) ( )

4 39.0966 10  m /s 0.48515 m/s 0.485 m/s
0.0025 m 0.75 m

VV
hW

−×
= = = ≅

×
 (5) 

Finally, the characteristic Reynolds number is 

( )( )( )3

3

864 kg/m 0.48515 m/s 0.0025 m
Re

72.5 10  kg/m s
Vhρ
µ −= = =

× ⋅
14.5  (6) 

The flow is definitely laminar. 
 
Discussion We give our final results to three significant digits. 

  
 
 
9-83 
Solution For a given velocity field, we are to calculate the pressure field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 Gravity does not act in either the x or the y direction.  
 
Analysis The flow field must satisfy the steady, two-dimensional, 
incompressible continuity and momentum equations. We check each equation 
separately; let’s consider continuity first: 
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Continuity: 

a a

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0 (2-D)

0=   

Continuity is satisfied. Now we look at the x component of the Navier-Stokes 
equation: 

x momentum:

 u
t

ρ ∂
∂

( )0 (steady) ax b a

u uu v
x y

+

∂ ∂
+ +

∂ ∂

( )2 0ay cx

uw
z

− +

∂
+

∂
0 (2-D)

x
P g
x

ρ

 
 

∂  = − +  ∂
 
 
 

2

2

0

u
x

µ ∂
+

∂

2

2

0

u
y
∂

+
∂

2

2

0

u
z
∂

+
∂

0 (2-D)

 
 
 
  
 

 (1) 

Equation 1 reduces to 

x momentum: ( 2P a x ab
x

∂
= − −

∂
ρ )  (2) 

The x momentum equation is satisfied provided we can generate a pressure field 
that satisfies Eq. 2. In similar fashion we examine the y momentum equation, 

y momentum:

 v
t

ρ ∂
∂

( ) ( )( )220 (steady) ax b cx ay cx a

v v vu v w
x y z

+ − + −

∂ ∂ ∂
+ + +

∂ ∂ ∂
0 (2-D)

y
P g
y

ρ

 
 

∂  = − +
  ∂
 
 

2 2

2 2

0 2c

v v
x y

µ ∂ ∂
+ +

∂ ∂

2

2

0

v
z
∂

+
∂

0 (2-D)

 
 
 
  
 

 

The y momentum equation reduces to 

y momentum: ( )2 22 2P acx bcx a y c
y

∂
= − − − +

∂
ρ µ  (3) 

The y momentum equation is satisfied provided we can generate a pressure field that 
satisfies Eq. 3. 
 In the two-dimensional flow under discussion here, the pressure field P(x,y) 
must be a smooth function of x and y. Mathematically, this requires that the order of 
differentiation (x then y versus y then x) should not matter. We check whether this is 
so by differentiating Eqs. 3 and 2 respectively: 

Cross-differentiation:

 ( )
2 2

0          2 2P P P P acx bc
y x y x x y x y

 ∂ ∂ ∂ ∂ ∂ ∂ = = = = − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
ρ  (4) 

Since the cross-derivative terms in Eq. 4 do not match, P is not a smooth function of x 
and y. Thus, we are unable to calculate a steady, incompressible, two-dimensional 
pressure field with the given velocity field. We cannot proceed any further. 
 
Discussion This problem shows that if a velocity field satisfies the continuity 
equation (conservation of mass), this does not necessarily guarantee that the velocity 
field is physically possible. In the present case, for instance, we are unable to find a 
pressure field that can satisfy the steady form of the Navier-Stokes equation. 
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9-84 
Solution For a given velocity field, we are to calculate the pressure field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 Gravity does not act in either the x or the y direction.  
 
Analysis The flow field must satisfy the steady, two-dimensional, 
incompressible continuity and momentum equations. We check each equation 
separately; let’s consider continuity first: 

Continuity: 

2 2ax ax

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0 (2-D)

0=   

Continuity is satisfied. Now we look at the x component of the Navier-Stokes 
equation: 

x momentum:

 u
t

ρ ∂
∂

( )( )20 (steady) 2ax ax

u uu v
x y

− −

∂ ∂
+ +

∂ ∂
( )( )2 0axy

uw
z
∂

+
∂

0 (2-D)

x
P g
x

ρ

 
  ∂  = − +
  ∂
 
 

2 2

2 2

0 2a

u u
x y

µ

−

∂ ∂
+ +

∂ ∂

2

2

0

u
z
∂

+
∂

0 (2-D)

 
 
 
  
 

 (1) 

equation 1 reduces to 

x momentum: 2 32 2P a x a
x

ρ µ∂
= − −

∂
 (2) 

The x momentum equation is satisfied provided we can generate a pressure field 
that satisfies Eq. 2. In similar fashion we examine the y momentum equation, 

y momentum:

 v
t

ρ ∂
∂

( )( ) ( )( )20 (steady) 2 2 2ax ay axy ax

v v vu v w
x y z

−

∂ ∂ ∂
+ + +

∂ ∂ ∂
0 (2-D)

y
P g
y

ρ

 
  ∂  = − +

∂ 
 
 

2

2

0

v
x

µ ∂
+

∂

2

2

0

v
y
∂

+
∂

2

2

0

v
z
∂

+
∂

0 (2-D)

 
 
 
  
 

 

The y momentum equation reduces to 

y momentum: 2 22P a x y
y

ρ∂
= −

∂
 (3) 

The y momentum equation is satisfied provided we can generate a pressure field that 
satisfies Eq. 3. 
 In the two-dimensional flow under discussion here, the pressure field P(x,y) 
must be a smooth function of x and y. Mathematically, this requires that the order of 
differentiation (x then y versus y then x) should not matter. We check whether this is 
so by differentiating Eqs. 3 and 2 respectively: 

Cross-differentiation: 
2 2

2 20          2P P P P a x
y x y x x y x y

ρ
 ∂ ∂ ∂ ∂ ∂ ∂ = = = = −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (4) 
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Since the cross-derivative terms in Eq. 4 do not match, P is not a smooth function of x 
and y. Thus, we are unable to calculate a steady, incompressible, two-dimensional 
pressure field with the given velocity field. We cannot proceed any further. 
 
Discussion This problem shows that even if a velocity field satisfies the 
continuity equation (conservation of mass), and even if we can plot streamlines for 
the flow field, this does not necessarily guarantee that the velocity field is physically 
possible. In the present case, for instance, we are unable to find a pressure field that 
can satisfy the steady Navier-Stokes equation. 

  
 
 
9-85 
Solution For a given velocity field, we are to calculate the pressure field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the r-θ plane. 4 Gravity does not act in either the r or the θ direction.  
 
Analysis The flow must satisfy the steady, two-dimensional, incompressible 
continuity and momentum equations. We check each equation separately, starting 
with continuity, 

Continuity: 
( )1 rru

r r
∂

∂
( )

0

1 u
r

θ

θ
∂

+
∂

( )

0

zu
z

∂
+

∂
0

0=   

Continuity is satisfied. Now we look at the θ component of the Navier-Stokes 
equation, 

 

u
t
θρ

∂
∂

2
0 (steady)

r

C K
r r

u u u
u

r r
θ θ θ

θ
 − 
 

∂ ∂
+ +

∂ ∂

( ) 3
2 0

r
z

CKK
rr

u u u
u

r z
θ θ∂

+ +
∂

0 (2-D)

1          P g
r θρ

θ

 
 
 
 
 
 
 

∂
= − +

∂

3
3

2

2 2 2

0

1 1

KK
rr

u u u
r

r r r r r
θ θ θµ

θ
∂ ∂∂  

+ − + ∂ ∂ ∂ 
2

0

2 ru
r θ

∂
−

∂

2

2

0

u
z
θ∂

+
∂

0 (2-D)

 
 
 
 
 
 
 

(1) 

The θ momentum equation reduces to 

θ momentum: 0P∂
=

∂θ
 (2) 

The θ momentum equation is satisfied provided we can generate a pressure field that 
satisfies Eq. 2. As a side note, we might have expected Eq. 2 without even working 
through the algebra, since in this problem the velocity field is independent of angle θ; 
we expect that pressure does not depend on θ either. In similar fashion the r 
momentum equation is 
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ru
t

ρ
∂
∂

2
0 (steady)

r r
r

C C
r r

uu u
u

r r
θ

θ
− 

 
 

∂ ∂
+ +

∂ ∂

( )
2

32

2

0

r
z

KK
rr

u u
u

r z
θ ∂

− +
∂

0 (2-D)

          r
P g
r

ρ

 
 
 
 
 
 
 

∂
= − +

∂

3
3

2

2 2 2

0

1 1r r r

CC
rr

u u u
r

r r r r r
µ

θ
∂ ∂∂  + − + ∂ ∂ ∂  2

0

2 u
r

θ

θ
∂

−
∂

2

2

0

ru
z

∂
+

∂
0 (2-D)

 
 
 
 
 
 
 

  

which reduces to 

r momentum: 
2 2

3

P K C
r r

ρ∂ +
=

∂
 (3) 

The r momentum equation is satisfied provided we can generate a pressure field that 
satisfies Eq. 3. 
 The pressure field P(r,θ) must be a smooth function of r and θ. 
Mathematically, this requires that the order of differentiation (r then θ versus θ then r) 
should not matter. We therefore check whether this is so by differentiating Eqs. 2 and 
3 respectively: 

Cross-differentiation: 
2 2

0          0P P P P
r r r r
∂ ∂ ∂ ∂ ∂ ∂   = = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   θ θ θ θ

=  (4) 

Equation 4 shows that indeed, P is a smooth function of r and θ. Thus, we should be 
able to calculate the pressure field. 
 To calculate P(r,θ), we start with either Eq. 2 or Eq. 3 and integrate. We pick 
Eq. 2, which we can partially integrate (with respect to θ) to obtain an expression for 
P(r,θ), 

Pressure field from θ-momentum: ( ) ( ), 0P r g r= +θ  (5) 

Note that we added an arbitrary function of the other variable r rather than a constant 
of integration since this is a partial integration. We then take the partial derivative of 
Eq. 5 with respect to r to obtain 

 ( )
2 2

3

P Kg r
r r

ρ∂ +′= =
∂

C  (6) 

where we have equated our result to Eq. 3 for consistency. We can now integrate Eq. 
6 to obtain the function g(r): 

 ( )
2 2

12

1
2

K Cg r C
r

ρ +
= − +  (7) 

where C1 is an arbitrary constant of integration. Finally, we plug Eq. 7 into Eq. 5 to 
obtain our final expression for P(x,y). The result is 

Answer: ( )
2 2

12

1,
2

K CP r C
r

θ ρ +
= − +  (8) 
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Thus the pressure field for this flow decreases like 1/r2 as we approach the origin. 
(The origin itself is a singularity point.) This flow field is a simplistic model of a 
tornado or hurricane, and the low pressure at the center is the “eye of the storm”. We 
note that this flow field is irrotational, and thus Bernoulli’s equation can be used 
instead to calculate the pressure. If we call the pressure P∞ far away from the origin (r 
→ ∞), where the local velocity approaches zero, Bernoulli’s equation shows that at 
any distance r from the origin, 

Bernoulli equation: 
2 2

2
2

1 1          
2 2

K CP V P P P
r

ρ ρ∞ ∞

+
+ = = −  (9) 

Equation 9 agrees with our solution (Eq. 8) from the full Navier-Stokes equation if we 
set constant C1 equal to P∞. A region of rotational flow near the origin would avoid 
the singularity there, and would yield a more physically realistic model of a real 
tornado. 
 
Discussion For practice, try to obtain Eq. 8 by starting with Eq. 3 rather than Eq. 
2; you should get the same answer. 

  
 
 
9-86 
Solution For a given velocity field, we are to calculate the pressure field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane. 4 Gravity does not act in either the x or the y plane.  
 
Analysis The flow field must satisfy the steady, two-dimensional, 
incompressible continuity and momentum equations. We check each equation 
separately; let’s consider continuity first: 

Continuity: 

a a

u v w
x y z

−

∂ ∂ ∂
+ +

∂ ∂ ∂
0 (2-D)

0=   

Continuity is satisfied. Now we look at the x component of the Navier-Stokes 
equation: 

x momentum:

 u
t

ρ ∂
∂

( )0 (steady) ax b a

u uu v
x y

+

∂ ∂
+ +

∂ ∂
( )0ay c

uw
z

− +

∂
+

∂
0 (2-D)

x
P g
x

ρ

 
  ∂  = − +
  ∂
 
 

2

2

0

u
x

µ ∂
+

∂

2

2

0

u
y
∂

+
∂

2

2

0

u
z
∂

+
∂

0 (2-D)

 
 
 
  
 

 (1) 

The x momentum equation reduces to 

x momentum: ( 2P a x ab
x

∂
= − −

∂
ρ )  (2) 

The x momentum equation is satisfied provided we can generate a smooth 
pressure field that satisfies Eq. 2. In similar fashion (we don’t show the details), the 
y momentum equation reduces to 

9-59 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 

y momentum: ( 2P a y ac
y

∂
= − +

∂
ρ )  (3) 

The y momentum equation is satisfied provided we can generate a smooth pressure 
field that satisfies Eq. 3. 
 The pressure field P(x,y) must be a smooth function of x and y. 
Mathematically, this requires that the order of differentiation (x then y verses y then x) 
should not matter. We therefore check whether this is so by differentiating Eqs. 3 and 
2 respectively: 

Cross-differentiation: 
2 2

0          0P P P P
x y x y y x y x

 ∂ ∂ ∂ ∂ ∂ ∂ = = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
=  (4) 

Equation 4 shows that indeed, P is a smooth function of x and y. Thus, we should be 
able to calculate the pressure field. 
 To calculate P(x,y), we start with either Eq. 2 or Eq. 3 and integrate. We 
pick Eq. 2, which we can partially integrate (with respect to x) to obtain an 
expression for P(x,y), 

Pressure field from x-momentum: ( ) ( )
2 2

,
2

a xP x y abx g y
 

= − − + 
 

ρ  (5) 

Note that we added an arbitrary function of the other variable y rather than a constant 
of integration since this is a partial integration. We then take the partial derivative of 
Eq. 5 with respect to y to obtain 

 ( ) ( )2P g y a y
y

∂ ′= = − +
∂

ρ ac  (6) 

where we have equated our result to Eq. 3 for consistency. We can now integrate Eq. 
6 to obtain the function g(y): 

 ( )
2 2

2
a yg y aρ

 
= − + + 

 
cy C  (7) 

where C is an arbitrary constant of integration. Finally, we plug Eq. 7 into Eq. 5 to 
obtain our final expression for P(x,y). The result is 

Solution: ( )
2 2 2 2

,
2 2

a x a yP x y abx acy Cρ
 

= − − − + + 
 

 (8) 

 
Discussion For practice, you should differentiate Eq. 8 with respect to both x and 
y, and compare to Eqs. 2 and 3. (This also serves as a check of our algebra.) In 
addition, try to obtain Eq. 8 by starting with Eq. 3 rather than Eq. 2; you should get 
the same answer. Pressure is found to within some arbitrary constant C since the 
absolute magnitude of pressure is irrelevant; only pressure gradients are important. 
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9-87 
Solution For a given geometry and set of boundary conditions, we are to 
calculate the velocity field, and plot the nondimensionalized velocity profile.  
 
Assumptions We number and list the assumptions for clarity: 

1 The walls are infinite in the y-z plane (y is into the page). 
2 The flow is steady, i.e. time derivatives of any quantity are zero. 
3 The flow is parallel (the x component of velocity, u, is zero everywhere). 
4 The fluid is incompressible and Newtonian, and the flow is laminar. 
5 Pressure P = constant everywhere. In other words, there is no applied 

pressure gradient pushing the flow; the flow establishes itself due to a 
balance between gravitational forces and viscous forces. 

6 The velocity field is purely two-dimensional, which implies that v = 0 and all 
y derivatives are zero. 

7 Gravity acts in the negative z direction. We can express this mathematically 
as g gk= − , or gx = gy = 0 and gz = −g. 

 
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions.  
 

Step 1 Set up the problem and the geometry. See Fig. P9-87. 
Step 2 List assumptions and boundary conditions. We have already listed seven 

assumptions. The boundary conditions come from the no-slip condition at the 
walls (1) at x = −h/2, u = v = w = 0. (2) At x = h/2, u = v = w = 0. 

Step 3 Write out and simplify the differential equations. We start with the 
continuity equation in Cartesian coordinates, 

Continuity: u
x
∂
∂

Assumption 3

v
y
∂

+
∂

Assumption 6

0          or          0w w
z z

∂ ∂
+ = =
∂ ∂

 
(1) 

Equation 1 tells us that w is not a function of z. In other words, it doesn’t matter 
where we place our origin – the flow is the same at any z location. In other words 
the flow is fully developed. Since w is not a function of time (Assumption 2), z 
(Eq. 1), or y (Assumption 6), we conclude that w is at most a function of x, 

Result of continuity: ( ) onlyw w x=  (2) 

 We now simplify each component of the Navier-Stokes equation as far as 
possible. Since u = v = 0 everywhere and gravity does not act in the x or y 
directions, the x and y momentum equations are satisfied exactly (in fact all terms 
are zero in both equations). The z momentum equation reduces to 

z momentum:

 

w
t

ρ ∂
∂

Assumption 2

wu
x

∂
+

∂
Assumption 3

wv
y

∂
+

∂
Assumption 6

ww
z

∂
+

∂
Continuity

P
z

 
  ∂  = −

∂ 
 
  Assumption 5

2 2

2 2   

z
g

g

w w
x y

ρ

ρ

µ

−

+

∂ ∂
+ +

∂ ∂

2

2

Assumption 6

w
z

∂
+

∂

2

2

continuity

            or            d w g
dx

ρ
µ

 
 
  =
 
 
 

 (3) 
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We have changed from a partial derivative (∂/∂x) to a total derivative (d/dx) in 
Eq. 3 as a direct result of Eq. 2, reducing the PDE to an ODE. 

Step 4 Solve the differential equations. Continuity and x and y momentum have 
already been “solved”. Equation 3 (z momentum) is integrated twice to get 

Integration of z momentum: 2
12

gw x C xρ
µ

= + + 2C  (4) 

Step 5 We apply boundary conditions (1) and (2) from Step 2 above to obtain 
constants C1 and C2, 

Boundary condition (1): 2
1 20

8 2
g hh C Cρ
µ

= − +   

and 

-0.14
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-0.08
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0

-0.5 -0.3 -0.1 0.1 0.3 0.5
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FIGURE 1 
The velocity profile of Problem 9-87 – 
liquid falling between two vertical walls. 

Boundary condition (2): 2
10

8 2
g hh C Cρ
µ

= + + 2   

We solve the above two equations simultaneously to obtain expressions for C1 
and C2, 

Constants of integration: 2
1 20       

8
gC C ρ
µ

−
= = h   

Finally, Eq. 4 becomes 

Final result for velocity field: 
2

2

2 2
g hw xρ
µ

  = −     
 (5) 

Since −h/2 < x < h/2 everywhere, w is negative everywhere as expected (flow is 
downward). 

Step 6 Verify the results. You can plug in the velocity field to verify that all the 
differential equations and boundary conditions are satisfied. 

 

 We nondimensionalize Eq. 5 by inspection: we let x* = x/h and w* = 
wµ/(ρgh2). Eq. 5 becomes 

Nondimensionalized velocity profile: ( )21* *
2

w x= −
 

1
4

  (6) 

We plot the nondimensional velocity field in Fig. 1. The velocity profile is parabolic. 
 
Discussion Equation 4 for the z component of velocity is identical to that of 
Example 9-17. In fact, the present problem is identical to Example 9-17 except for the 
boundary conditions and the location of the origin. Comparing the two results, we see 
that the maximum nondimensional velocity for the case with two walls is one-fourth 
than that for the case with only one wall. This is not unexpected – the additional wall 
leads to more viscous forces that retard the flow. 
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9-88 
Solution We are to calculate and compare the volume flow rate per unit width 
of fluid falling between two vertical walls and fluid falling along one vertical wall.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The walls are 
infinitely wide and very long so that all of the parallel flow, fully developed 
approximations of Problem 9-87 hold. 
 
Analysis We calculate the volume flow rate per unit width by integration of the 
velocity: 

Volume flow rate per unit depth, two vertical walls:

 

/ 22 3 2/ 2 / 2 2

/ 2 / 2
/ 2

3 3 3 3 3

2 2 2 3 4

   
2 24 8 24 8 12

x h
h h

h h
x h

V g h g xwdx x dx x
L

g h h h h gh

ρ ρ
µ µ

ρ ρ
µ µ

=

− −
=−

      = = − = −           
  −

= − + − = 
 

∫ ∫
h

 (1) 

The result is negative since we have defined positive volume flow rate upward, since 
z is upward, but the flow is downward. We calculate V / L  for the case of one 
vertical wall using Eq. 5 of Example 9-17, 

Volume flow rate per unit depth, one vertical wall with a free surface:

 
( )

3
2

0 0
0

3 3
3

2
2 2 3

   0 0
2 3 3

x h
h h

x

V gx g xwdx x h dx x h
L

g h ghh

ρ ρ
µ µ

ρ ρ
µ µ

=

=

  
= = − = −  

   

  −
= − − + = 

 

∫ ∫
 (2) 

Comparing the two cases we see that V / L  for the case of one vertical wall and a 
free surface is four times greater than the case of two vertical walls with no free 
surface. The physical explanation is that with two walls, the fluid is held back by 
more viscous stresses, leading to a parabolic velocity profile. For the single-wall case 
the free surface has no shear stress and thus the fluid flows more freely.  
 
Discussion The two flows being compared here are identical except for the 
boundary conditions. This illustrates the importance of setting proper boundary 
conditions. 

  
 
 
9-89 
Solution For a given geometry and set of boundary conditions, we are to 
calculate the velocity and pressure fields, and plot the nondimensional velocity 
profile.  
 
Assumptions We number and list the assumptions for clarity: 

1 The wall is infinite in the s-y plane (y is out of the page for a right-handed 
coordinate system). 

2 The flow is steady, i.e. ( )anything 0
t
∂

=
∂

. 
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3 The flow is parallel and fully developed (we assume the normal component 
of velocity, un, is zero, and we assume that the streamwise component of 
velocity us is independent of streamwise coordinate s). 

4 The fluid is incompressible and Newtonian, and the flow is laminar. 
5 Pressure P = constant = Patm at the free surface. In other words, there is no 

applied pressure gradient pushing the flow; the flow establishes itself due to 
a balance between gravitational forces and viscous forces along the wall. 
Atmospheric pressure is constant everywhere since we are neglecting the 
change of air pressure with elevation. 

6 The velocity field is purely two-dimensional, which implies that v = 0 and 

y
∂
∂

 (any velocity component) = 0. 

7 Gravity acts in the negative z direction. We can express this mathematically 
as g gk= − . In the s-n plane, gs = gsinα and gn = −gcosα. 

 
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions.  
 

Step 1 Set up the problem and the geometry. See Fig. P9-89. 
Step 2 List assumptions and boundary conditions. We have already listed seven 

assumptions. The boundary conditions are (1) No slip at the wall: at n = 0, us = v 
= un = 0. (2) At the free surface (n = h) there is no shear, which in this coordinate 
system at the vertical free surface means ∂us/∂n = 0. (3) P = Patm at n = h. 

Step 3 Write out and simplify the differential equations. We start with the 
continuity equation in modified Cartesian coordinates, (s,y,n) and (us,v,un), 

Continuity: su v
s y

∂ ∂
+

∂ ∂
Assumption 6

nu
n

∂
+

∂
Assumption 3

0          or          0su
s

∂
= =

∂
 

(1) 

Equation 1 tells us that us is not a function of s. In other words, it doesn’t matter 
where we place our origin – the flow is the same at any s location. This does not 
tell us anything new; we have already assumed that the flow is fully developed 
(Assumption 3). Furthermore, since us is not a function of time (Assumption 2) or 
y (Assumption 6), we conclude that us is at most a function of n, 

Result of continuity: ( ) onlys su u n=  (2) 

 We now simplify each component of the Navier-Stokes equation as far as 
possible. Since v = 0 everywhere and gravity does not act in the y direction, the y 
momentum equation is satisfied exactly (in fact all terms are zero). Since un = 0 
everywhere, the only non-zero terms in the n momentum equation are the 
pressure term and the gravity term. The n momentum equation reduces to 

n momentum:

 nDu
Dt

ρ 2

cos
Assumption 3

n n
g

P g u
n

ρ α

ρ µ
−

∂
= − + + ∇

∂
Assumption 3

        or         cosP g
n

ρ α∂
= −

∂
 (3) 

We integrate Eq. 3 to solve for the pressure, 

Pressure: ( )cosP gn fρ α= − + s  (4) 
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where we have added a function of s rather than a simple constant of integration. 
But from boundary condition (3), at n = h, P = Patm. Thus Eq. 4 yields 

 ( ) atm cosf s P ghρ α= +   

In other words, f(s) is really not a function of s at all. Equation 4 then becomes 

Final expression for pressure: ( )atm cosP P g h nρ α= + −  (5) 

 The s momentum equation reduces to 

s momentum:

 

su
t

ρ
∂
∂

Assumption 2

s
s

u
u

s
∂

+
∂

Continuity

su
v

y
∂

+
∂

Assumption 6

s
n

u
u

n
∂

+
∂

Assumption 3

P
s

 
  ∂  = −
  ∂
 
 

sin
Eq. 5

2

2   

s

g

s

g

u
s

ρ α

ρ

µ

+

∂
+

∂

2

2

continuity

su
y

∂
+

∂

2 2

2 2

Assumption 6

sin            or            s su d u g
n dn

ρ α
µ

 
 ∂ + =

∂ 
 
 

−

 (6) 

We have changed from a partial derivative (∂/∂n) to a total derivative (d/dn) in 
Eq. 6 as a direct result of Eq. 2, reducing the PDE to an ODE. 

Step 4 Solve the differential equations. Continuity and n and y momentum have 
already been “solved”. Equation 6 (s momentum) is integrated twice to get 

Integration of s momentum: 2
1

sin
2s

gu n Cρ α
µ

= − + + 2n C  (7) 

Step 5 We apply boundary conditions (1) and (2) from Step 2 above to obtain 
constants C1 and C2, 

Boundary condition (1): 2 20 0   at  0        0su C n C= + + = =   
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FIGURE 1 
The velocity profile of Problem 9-89 – an oil 
film falling down an inclined wall, α = 60o. 

Boundary condition (2):

 1 1
sin sin0           s

n h

du g gh C C
dn

hρ α ρ α
µ µ=

 = − + = =


  

Finally, Eq. 4 becomes 

Final result for velocity field: (sin 2
2s

gu nρ α
µ

= − )h n  (8) 

Since n < h in the film, us is positive everywhere as expected (flow is downward). 
Step 6 Verify the results. You can plug in the velocity field to verify that all the 

differential equations and boundary conditions are satisfied. 
 

 When α = 90o sinα = 1 and Eq. 8 is equivalent to Eq. 5 of Example 9-17. 
(The signs are opposite since s is down while z is up.) Also, Eq. 5 above reduces to P 
= Patm everywhere when α = 90o since cosα = 0; this also agrees with the results of 
Example 9-17. 
 We nondimensionalize Eq. 8 by inspection: we let n* = n/h and us* = 
usµ/(ρgh2). Eq. 8 becomes 

Nondimensional velocity profile: ( )** 2 * sin
2s

nu n α= −  (9) 

We plot the nondimensional velocity field in Fig. 1 for the case in which α = 60o.  
 
Discussion The profile shape is identical to that of Example 9-17, but is scaled by 
the factor sinα. This problem could also have been solved in standard Cartesian 
coordinates (x,y,z), but the algebra would be more involved. 
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9-90 
Solution We are to calculate the volume flow rate per unit width of oil falling 
down a vertical wall.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The wall is 
infinitely wide and very long so that all of the parallel flow, fully developed 
approximations of Problem 9-89 hold. 
 
Analysis We calculate the volume flow rate per unit width by integration of the 
velocity: 

Volume flow rate per unit depth:

 ( ) 3

0 0

sin sin2
2 3

h h

s
V g gu dn n h n dn h
L

ρ α ρ
µ µ

 
= = − = 

 
∫ ∫

α  (1) 

For an oil film of thickness 5.0 mm with ρ = 888 kg/m3 and µ = 0.80 kg/(m⋅s), we 
calculate V / L  using Eq. 1, 

Result: 

 
( )( ) ( )( )

( )

33 2 o
3

888 kg/m 9.81 m/s sin 60 0.005 msin
3 3 0.80 kg/m s

V g h
L

ρ α
µ

= = =
⋅

-4 23.93×10  m /s  

 
Discussion Since viscosity is in the denominator of Eq. 1, a low viscosity liquid 
(like water) would yield a larger volume flow rate; this agrees with our intuition. 
Likewise, a larger density liquid and/or a thicker film would yield a larger volume 
flow rate, again agreeing with our intuition. Finally, if α = 0o there is no flow. 
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9-91 
Solution We are to expand two terms into three terms, and then compress the 
three terms into one term.  
 
Analysis We use the product rule to differentiate the expression, 

 
2

2 2

1 1u u u u u
r

r r r r rr r
θ θ θ θ θµ µ

  ∂ ∂ ∂∂   − = + −   ∂ ∂ ∂∂    
2r

  

The second part of this question involves some trial and error, using the product rule 
in reverse. After some effort we get 

 ( )
2

2 2

1 1u u u
ru

r r r r rr r
θ θ θ

θµ µ
   ∂ ∂ ∂ ∂ + − =    ∂ ∂ ∂∂    

 (1) 

You can apply the product rule to verify Eq. 1. 
 
Discussion The grouping of these terms into one term as in Eq. 1 turns out to be 
useful for some analytical solutions of the Navier-Stokes equation. 

  
 
 
9-92 
Solution For a given geometry and set of boundary conditions, we are to 
calculate the velocity field. 
 
Assumptions We number and list the assumptions for clarity: 

1 The cylinders are infinite in the z direction (z is out of the page in Fig. P9-92 
for a right-handed coordinate system). The velocity field is purely two-
dimensional, which implies that w = 0 and derivatives of any velocity 
component with respect to z are zero. 

2 The flow is steady, meaning that all time derivatives are zero. 
3 The flow is circular, meaning that the radial velocity component ur is zero. 
4 The flow is rotationally symmetric, meaning that nothing is a function of θ. 
5 The fluid is incompressible and Newtonian, and the flow is laminar. 
6 Gravitational effects are ignored. (Note that gravity may act in the z 

direction, leading to an additional hydrostatic pressure distribution in the z 
direction. This would not affect the present analysis.) 

 
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions.  
 

Step 1 Set up the problem and the geometry. See Fig. P9-92. 
Step 2 List assumptions and boundary conditions. We have already listed five 

assumptions. The boundary conditions are (1) No slip at the inner wall: at r = Ri, 
uθ = ωiRi. (2) No slip at the outer wall: at r = Ro, uθ = 0. 

Step 3 Write out and simplify the differential equations. We start with the 
continuity equation in cylindrical coordinates, (r,θ,z) and (ur,uθ,uz), 

Continuity: 
( )1 rru

r r
∂

∂
( )

Assumption 3

1 u
r

θ

θ
∂

+
∂

Assumption 4

w
z

∂
+

∂
Assumption 1

0         or         0 0= =  (1) 
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Thus continuity is satisfied exactly by our assumptions. 
 We now simplify each component of the Navier-Stokes equation as far as 
possible. Since w = 0 everywhere and gravity is ignored, the z momentum 
equation is satisfied exactly (in fact all terms are zero). Since ur = 0 everywhere, 
the only non-zero terms in the r momentum equation are the pressure term and 
the “extra” term that involves uθ. The r momentum equation reduces to 

r momentum: 
2 2

     or     
u uP dP

r r dr r
θ θρ ρ∂

= =
∂

 (2) 

We have changed the partial derivatives to total derivatives since P is a function 
only of r. Equation 2 could be used to solve for P(r) once we find uθ. 
 The θ momentum equation is written out, using the result of Problem 9-91, 

θ momentum:

 

u
t
θρ

∂
∂

Assumption 2

r
u

u
r
θ∂

+
∂

Assumption 3

u u
r
θ θ

θ
∂

+
∂

Assumption 4

ru u
r
θ+

Assumption 3

z
u

u
z
θ∂

+
∂

Assumption 1

1 P
r θ

 
 
 
  
 

∂
= −

∂
Assumption 4

gθρ+ ( )
2

2 2

Assumption 6

1 1 u
ru

r r r r
θ

θµ
θ

∂∂ ∂ + + ∂ ∂ ∂  2

Assumption 4

2 ru
r θ

∂
−

∂

2

2

Assumption 3

u
z
θ∂

+
∂

Assumption 6

 
 
 
  
 

 

Again we change from partial derivatives (∂/∂r) to a total derivatives (d/dr), 
reducing the PDE to an ODE. The θ momentum equation reduces to 

Reduced θ momentum: ( )1 0d d ru
dr r dr θ

  =
 

  (3) 

Step 4 Solve the differential equations. Continuity and z momentum have already 
been “solved”. Equation 3 (θ momentum) is integrated once, 

Integration of θ momentum: ( ) 1
1 d ru C
r dr θ =   

After multiplying by r we integrate again. After division by r we get 

uθ: 2
1 2

Cru C
rθ = +  (4) 

Step 5 We apply boundary conditions (1) and (2) from Step 2 above to obtain 
constants C1 and C2, 

Boundary condition (2): 
2

2
1 20      or     

2 2
o o

o

R RC
C C

R
= + = − 1C   

and 

Boundary condition (1): 
2

2
1 12 2

i i
i i

i i

R RC
R C C C

R R
ω = + = − 1 2

oR
  

Which can be solved for C1. The two constants of integration are thus 
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Constants of integration: 
2 2

1 22 2 2

2
         i i o i i

o i o i

R R
C C

R R R R

2

2

Rω ω−
= =

− −
  

Finally, Eq. 4 becomes (after a bit of algebra) 

Final result for velocity field: 
2 2

2 2
i i o

o i

R R
u r

rR Rθ
ω  

= − 
−  

 (5) 

Step 6 Verify the results. You can plug in the velocity field to verify that all the 
differential equations and boundary conditions are satisfied. 

 
Discussion There are valid alternative forms of Eq. 5. We could integrate Eq. 2 to 
solve for the pressure since we now know uθ from Eq. 5. The algebra is laborious, but 
not difficult. 
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9-93 
Solution We are to simplify the velocity field for two limiting cases of Problem 
9-92 and discuss.  
 
Assumptions The same assumptions of Problem 9-92 apply here. 
 

 

V 
y h Liquid 

Rotating inner cylinder 

Stationary outer cylinder  
 

FIGURE 1 
A magnified view of Fig. P9-92 near the 
bottom for the case in which the gap 
between the two cylinders is very small. 

Analysis (a) First we re-write the velocity profile from Problem 9-92, 

Exact velocity profile:

 
( )( )

( )( )2 2 2

2 2
o oi i o i i

o i o io i

R r R rR R R
u r

r R R R R rR Rθ
ω ω  − + 

= − =     − +−    
 (1) 

Note that Eq. 1 is still exact. When the gap is very small, (Ro – Ri) << Ro, and Ro ≈ Ri. 
Thus we replace Ro + Ri in the denominator of Eq. 1 by 2Ri. Similarly, r ≈ Ri and we 
replace Ro + r in the numerator of Eq. 1 by 2Ri. Likewise we replace r in the 
denominator of Eq. 1 by Ri. As suggested we define y = Ro – r, h = gap thickness = Ro 
– Ri, and V = speed of the “upper plate” = Riωi (Fig. 1). Plugging all of these 
approximations and definitions into Eq. 1 we get 

Approximate velocity for small gap: 
2 2
2

i i i i i

i i

R y R y R yu V
h R R h hθ

ω ω ⋅
≈ = 

⋅  
=  (2) 

We verify that Eq. 2 is linear in the small gap and is the same velocity profile as we 
generated for 2-D Couette flow between two infinite flat plates. 
 

(b) As the outer cylinder radius approaches infinity, Ri << Ro, and Ri can be ignored 
when added to or subtracted from Ro. Similarly, r << Ro, and r can be ignored when 
added to or subtracted from Ro. Equation 1 becomes 

Approximate velocity for infinite Ro: ( )( )
( )( )2 2

o oi i i i

o o

R RR R
u

R R r rθ
ω ω 

≈ =  
 

 (3) 

We recognize Eq. 3 as of the form uθ = constant/r which is the velocity field for a 
line vortex. 
 
Discussion Imagine a long, thin cylinder spinning in a vat of liquid. After a long 
time, the flow field given by Eq. 3 would emerge – basically a line vortex for all radii 
greater than Ri. 
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9-94 
Solution For a given geometry and set of boundary conditions, we are to 
calculate the velocity field. 
 
Assumptions The assumptions are identical to those of Problem 9-92. 
 
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions. Everything is identical to Problem 
9-92 except for the boundary condition at the outer cylinder wall. We re-write 
boundary condition (2): at r = Ro, uθ = ωoRo. We will not repeat all the algebra 
associated with the equations of motion. The tangential velocity component is still 

uθ: 2
1 2

Cru C
rθ = +  (1) 

Now we apply boundary conditions (1) and (2) to obtain constants C1 and C2, 

Boundary condition (1): 1 2
1

2
i

i i
i

R
C C R

R
ω+ =  (2) 

and 

Boundary condition (2): 1 2
1

2
o

o o
o

R
C C R

R
ω+ =  (3) 

We solve Eqs. 2 and 3 simultaneously for C1 and C2. The result is 

Constants of integration: 
( ) ( )2 2 2 2

1 22 2 2 2

2
         o o i i o i i o

o i o i

R R R R
C C

R R R R

ω ω ω ω− −
= =

− −
 (4) 

Finally, Eq. 4 becomes (after a bit of algebra) 

Final result for velocity field:

 ( ) ( )2 2
2 2

2 2

1 o i i o
o o i i

o i

R R
u R R r

rR Rθ

ω ω
ω ω

 −
= − + 

−   
 (5) 

We set Ωo = 0 in Eq. 5 to verify that it simplifies to the result of Problem 9-92, 

Simplified velocity field: 
2 2

2 2
i i o

o i

R R
u r

rR Rθ
ω  

= −
−  

  (6) 

 
Discussion There are valid alternative forms of Eq. 5. 

  
 
 

9-72 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 
9-95 
Solution We are to discuss a simplified version of the velocity field of Problem 
9-94. 
 
Assumptions The assumptions are identical to those of Problem 9-94. 
 
Analysis We set Ri = ωi = 0 in Eq. 5 of Problem 9-94. The tangential velocity 
component simplifies to 

Simplified uθ: 2
2

1
o o o

o

u R r
Rθ rω ω = =   (1) 

We recognize Eq. 1 as the velocity field for solid body rotation. 
 To set up this velocity field in a physical experiment, we would place a 
cylindrical container of liquid on a rotating table. After a long time, the entire tank, 
including the liquid, would be in solid body rotation. 
 
Discussion If you imagine flow between the inner and outer cylinders as in 
Problem 9-94, and then imagine that the inner cylinder stops spinning and shrinks to 
infinitesimal radius, you can convince yourself that solid body rotation will result. 

  
 
 
9-96 
Solution For flow in a pipe annulus we are to calculate the velocity field.  
 
Assumptions We number and list the assumptions for clarity: 

1 The pipe is infinitely long in the x direction. 

2 The flow is steady, i.e. ( )anything 0
t
∂

=
∂

. 

3 This is a parallel flow (the r component of velocity, ur, is zero). 
4 The fluid is incompressible and Newtonian, and the flow is laminar. 
5 A constant pressure gradient is applied in the x direction such that pressure 

changes linearly with respect to x according to the given expression. 
6 The velocity field is axisymmetric with no swirl, implying that uθ = 0 and 

 ( )anything 0∂
=

∂θ
. 

7 We ignore the effects of gravity. 
 
Analysis We obtain the velocity field by following the step-by-step procedure 
for differential fluid flow solutions.  
 

Step 1 Lay out the problem and the geometry. See Fig. P9-96. 
Step 2 List assumptions and boundary conditions. We have already listed seven 

assumptions. The boundary conditions come from imposing the no slip condition 
at both pipe walls: (1) at r = Ri, V 0= . (2) at r = Ro, V . 0=

Step 3 Write out and simplify the differential equations. We start with the 
continuity equation in cylindrical coordinates, 
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Continuity: 
( )1 rru

r r
∂

∂
( )

Assumption 3

1 u
r
∂

+
∂

θ

θ
Assumption 6

0          or          0u u
x x
∂ ∂

+ = =
∂ ∂

 (1) 

Equation 1 tells us that u is not a function of x. In other words, it doesn’t matter 
where we place our origin – the flow is the same at any x location. This can also 
be inferred directly from Assumption 1, which tells us that there is nothing 
special about any x location since the pipe is infinite in length – the flow is fully 
developed. Furthermore, since u is not a function of time (Assumption 2) or θ 
(Assumption 6), we conclude that u is at most a function of r, 

Result of continuity: ( ) onlyu u r=  (2) 

Next we simplify the x momentum equation as far as possible: 

x momentum:

 

u
t

∂
∂

ρ

Assumption 2

r
uu
r
∂

+
∂

Assumption 3

u u
r
∂

+
∂

θ

θ
Assumption 6

uu
x
∂

+
∂

Continuity

          x
P g
x

 
 
 
  
 

∂
= − +

∂
ρ

2

2 2

Assumption 7

1 1u ur
r r r r
∂ ∂ ∂ + + ∂ ∂ ∂ 

µ
θ

2

2

Assumption 6

u
x
∂

+
∂

Continuity

 
 
 
  
 

 (3) 

or 

Result of x momentum: 1 1d dur
r dr dr x

P∂  =  ∂  µ
 (4) 

Note that we have replaced the partial derivative operators for the u derivatives 
with total derivative operators because of Eq. 2. 
 Every term in the r momentum equation is zero except the pressure gradient 
term, forcing that lone term to also be zero, 

r momentum: 0P
r

∂
=

∂
 (5) 

In other words, P is not a function of r. Since P is also not a function of time 
(Assumption 2) or θ (Assumption 6), P can be at most a function of x, 

Result of r momentum: ( ) onlyP P x=  (6) 

Therefore we can replace the partial derivative operator for the pressure gradient 
in Eq. 4 by the total derivative operator since P varies only with x. Finally, all 
terms of the θ component of the Navier-Stokes equation go to zero. 

Step 4 Solve the differential equations. Continuity and r momentum have already 
been “solved”, resulting in Eqs. 2 and 6 respectively. The θ momentum equation 
has vanished, and thus we are left with Eq. 4 (x momentum). After multiplying 
both sides by r, we integrate once to obtain 
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Integration of x momentum: 
2

12
du r dPr C
dr dx

= +
µ

 (7) 

where C1 is a constant of integration. Note that the pressure gradient dP/dx is a 
constant here. After dividing both sides of Eq. 7 by r, we can integrate a second 
time to get 

Second integration of x momentum: 
2

1 2ln
4
r dPu C r

dx
= + +

µ
C  (8) 

where C2 is a second constant of integration. 
Step 5 Apply boundary conditions from Step 2 above to obtain constants C1 and C2: 

Boundary condition (1): 
2

1 20 ln
4

i
i

R dP C R C
dxµ

= + +   

and 

Boundary condition (2): 
2

1 20 ln
4

o
o

R dP C R C
dxµ

= + +   

We solve the above two equations simultaneously to find C1 and C2, 

Constants: 
( ) ( )2 2 2 2

1 2

ln ln
      

4 ln 4 ln

o i o i i o

o o

i i

R R R R R RdP dPC C
R Rdx dx
R R

µ µ

− −
= − =   

After some algebra and rearrangement, Eq. 7 becomes 

Final result for axial velocity: 

2 2

2

ln ln
1

4 ln

i o
o i

o

i

r rR R
R RdPu r

Rdx
R

µ

 − 
 = +
 
 
 

 (9) 

Step 6 Verify the results. You can plug in the velocity field to verify that all the 
differential equations and boundary conditions are satisfied. 

 
Discussion There are other valid forms of Eq. 9. For example, after some 
rearrangement, Eq. 9 can be written as 

Alternative form: 
2 2

221 ln
4 ln

o i
o

o o

i

R RdP ru r R
Rdx R
R

µ

 
 − = − −
 
 
 

 (10) 
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9-97 
Solution We are to generate the velocity field for a given flow setup. 
 
Assumptions All assumptions are the same as those of Problem 9-96 except for the 
fifth one, which we modify here: 5 Pressure P is constant everywhere. 
 
Analysis Most of the algebra is identical to that of Problem 9-96 except that the 
pressure gradient is zero, making this problem easier. Also, the first boundary 
condition changes: at r = Ri, u = V. The x momentum equation reduces to 

Result of x momentum: 1 0d dur
r dr dr

  = 
 

 (1) 

After integration, division by r, and a second integration, Eq. 1 yields 

x component of velocity:  1 2lnu C r C= + (2) 

We apply boundary conditions: 

Boundary condition (1):  1 2ln iV C R C= +  

and 

Boundary condition (2):  1 20 ln oC R C= +  

We solve the above two equations simultaneously to yield the constants, 

Constants of integration: 1 2
ln

       
ln ln

o

o o

i i

V RVC C
R R
R R

−
= =  

(3) 

and thus Eq. 2 becomes 

Result for u: ( )
ln

ln ln
ln ln

o

o
o o

i i

RVV ru R r
R R
R R

= − =  (4) 

 
Discussion In this and other parallel flow problems, the nonlinear terms in the 
Navier-Stokes equation drop out, simplifying the problem and enabling an exact 
analytical solution to be found. 

  
 
 

9-76 
 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights 
reserved.  No part of this Manual may be displayed, reproduced or distributed in any 
form or by any means, without the prior written permission of the publisher, or used 
beyond the limited distribution to teachers and educators permitted by McGraw-Hill 
for their individual course preparation.  If you are a student using this Manual, you 
are using it without permission. 



Solution Manual, Chapter 9 – Differential Analysis of Fluid Flow 
 
9-98 
Solution We are to generate the velocity field for a given flow setup. 
 
Assumptions All assumptions are the same as those of Problem 9-97. 
 
Analysis The algebra is identical to that of Problem 9-97 except that the 
boundary conditions are swapped: at r = Ri, u = 0 and at r = Ro, u = V. The x 
momentum equation reduces to 

Result of x momentum: 1 0d dur
r dr dr

  = 
 

 (1) 

After integration, division by r, and a second integration, Eq. 1 yields 

x component of velocity:  1 2lnu C r C= + (2) 

We apply boundary conditions: 

Boundary condition (1):  1 2ln oV C R C= +  

and 

Boundary condition (2):  1 20 ln iC R C= +  

We solve the above two equations simultaneously to yield the constants, 

Constants of integration: 1 2
ln

       
ln ln

i

i i

o o

V RVC C
R R
R R

−
= =  

(3) 

and thus Eq. 2 becomes 

Result for u: ( )
ln

ln ln
ln ln

i

i
i i

o o

RVV ru R r
R R
R R

= − =  (4) 

 
Discussion Since the boundary conditions of the present problem are the same as 
those of Problem 9-97 except that Ro and Ri are swapped, it turns out that the result is 
also identical except that the two radii are swapped. 

  
 
 
9-99 
Solution For modified Couette flow with two immiscible fluids we are to list 
the boundary conditions and then solve for both the velocity and pressure fields. 
Finally we are to plot the velocity profile across the channel. 
 
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane. 
 
Properties The density and viscosity of water at T = 80oC are 971.8 kg/m3 and 
0.355 × 10-3 kg/(m⋅s) respectively. The density and viscosity of unused engine oil at T 
= 80oC are 852 kg/m3 and 32.0 × 10-3 kg/(m⋅s) respectively. 
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Analysis (a) The velocity boundary conditions come from the no-slip condition 
at the walls: 

Boundary condition (1): At z = 0, u1 = 0 (1) 

and 

Boundary condition (2): At z = h1 + h2, u2 = V (2) 

At the interface we know that both the velocities and the shear stresses must match, 

Boundary condition (3): At z = h1, u1 = u2 (3) 

and 

Boundary condition (4): At z = h1, 1 2
1 2

du du
dz dz

µ µ=  (4) 

The first pressure boundary condition comes from the known pressure on the bottom, 

Boundary condition (5): At z = 0, P = P0 (5) 

The second pressure boundary condition comes from the fact that the pressure cannot 
have a discontinuity at the interface since we are ignoring surface tension, 

Boundary condition (6): At z = h1, P1 = P2 (6) 
 

(b) We solve for the velocity field using the step-by-step procedure outlined in this 
chapter. However, we leave out the details because the algebra is identical to that of 
simple Couette flow – the only difference is in the boundary conditions. For parallel, 
fully developed flow in the x direction, u is the only non-zero velocity component and 
it is a function of z only. The x momentum equations in the two fluids reduce to 

x momentum: 
2 2

1 2
2 20        0

d u d u
dz dz

= =  (7) 

We integrate both parts of Eq. 7 twice, introducing four constants of integration, 

Expressions for u:  1 1 2 2 3        u C z C u C z C= + = + 4 (8) 

We apply the first four boundary conditions to find these constants, 

Boundary conditions (1) and (2): ( )2 3 10        C V C h h= = + 2 4C+   

and 

Boundary conditions (3) and (4): 1 1 3 1 4 1 1 2 3        C h C h C C Cµ µ= + =   

After some algebra, we solve simultaneously for all the constants, 

 2 1
1 2 3 4

2 1 1 2 2 1 1 2 2 1 1 2

      0            
V V

C C C C V
h h h h h h
µ µ

µ µ µ µ µ µ
 −

= = = =  
+ +  

2 1 1 1h hµ µ
+

 (9) 

And the velocity components of Eq. 8 become 

 2
1

2 1 1 2

V
u z

h h
µ

µ µ
=

+
 (10) 

and 
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 ( )( )1 2 1 1 1
2 1 1 2

2 1 1 2 2 1 1 2 2 1 1 2

V h h Vu z V z h
h h h h h h
µ µ µ

µ
µ µ µ µ µ µ

 −
= + = − + 

+ + + 
1hµ  (11) 

You should plug in the boundary conditions to verify that Eqs. 10 and 11 are correct. 
 

(c) We analyze the z momentum equation to find the pressure. Since w = 0 
everywhere, the only non-zero terms are the pressure and gravity terms. Thus we have 

0

2

4

6

8

10

12

0 2 4 6 8 1
u (m/s) 

z 
(mm) 

0

Interface 
Oil 

Water 

 

FIGURE 1 
The velocity profile of Problem 9-99 – 
Couette flow with two immiscible liquids. 

z momentum: 1 2
1 2        

dP dP
g g

dz dz
ρ ρ= − = −  (12) 

We integrate Eqs. 12 to obtain 

Pressure: 1 1 5 2 2        P gz C P gz C6ρ ρ= − + = − +  (13) 

After applying boundary conditions (5) and (6) we obtain the final expressions for the 
two pressures, 

 1 0 1P P gzρ= −  and ( )2 0 1 2 1 2P P ghρ ρ ρ= + + − gz  (14) 

Again you can verify that the boundary conditions are satisfied by Eq. 14. 
 

(d) For the given fluid properties we plot the velocity profile in Fig. 1. Since the oil is 
so much more viscous than the water, the oil velocity is nearly constant (small slope) 
while the water velocity varies rapidly (large slope). At the interface the viscosity 
times the slope must match, so this should not be surprising. 
 
Discussion Both velocity profiles are linear. The pressure is simply hydrostatic 
since P is a function of z only. The oil must be on top since it is less dense than water. 

  
 
 
9-100 
Solution We are to calculate u(r) for flow inside an inclined round pipe.  
 
Assumptions We number and list the assumptions for clarity: 

1 The pipe is infinitely long in the x direction. 
2 The flow is steady, i.e. any time derivative is zero. 
3 This is a parallel flow (the r component of velocity, ur, is zero). 
4 The fluid is incompressible and Newtonian, and the flow is laminar. 
5 The pressure is constant everywhere except for hydrostatic pressure. 
6 The velocity field is axisymmetric with no swirl, implying that uθ = 0 and 
 all derivatives with respect to θ are zero. 

 
Analysis To obtain the velocity and pressure fields, we follow the step-by-step 
procedure outlined above.  
 

Step 1 Lay out the problem and the geometry. See Fig. P9-100. 
Step 2 List assumptions and boundary conditions. We have already listed six 

assumptions. The first boundary condition comes from imposing the no slip 
condition at the pipe wall: (1) at r = R, 0V = . The second boundary condition 
comes from the fact that the centerline of the pipe is an axis of symmetry: (2) at r 
= 0, du/dr = 0. 
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Step 3 Write out and simplify the differential equations. We start with the 

continuity equation in cylindrical coordinates, a modified version of Eq. 9-62a, 

Continuity: 
( )1 rru

r r
∂

∂
( )

Assumption 3

1 u
r
∂

+
∂

θ

θ
Assumption 6

0          or          0u u
x x
∂ ∂

+ = =
∂ ∂

 (1) 

Equation 1 tells us that u is not a function of x. In other words, it doesn’t matter 
where we place our origin – the flow is the same at any x location. This can also 
be inferred directly from Assumption 1, which tells us that there is nothing 
special about any x location since the pipe is infinite in length – the flow is fully 
developed. Furthermore, since u is not a function of time (Assumption 2) or θ 
(Assumption 6), we conclude that u is at most a function of r, 

Result of continuity: ( ) onlyu u r=  (2) 

We now simplify the x momentum equation as far as possible: 

x momentum:

 

u
t

ρ ∂
∂

Assumption 2

r
uu
r
∂

+
∂

Assumption 3

u u
r
θ

θ
∂

+
∂

Assumption 6

uu
x
∂

+
∂

Continuity

      P
x

 
 
 
  
 

∂
= −

∂

2

2 2
sin

Assumption 5

1 1
x

g

u ug r
r r r r

ρ α

ρ µ
θ

∂ ∂ ∂ + + + ∂ ∂ ∂ 

2

2

Assumption 6

u
x
∂

+
∂

Continuity

 
 
 
  
 

  

or 

Result of x momentum: 1 sd du gr
r dr dr

inρ α
µ

−  = 
 

 (3) 

As in previous examples the material acceleration (entire left hand side of the x 
momentum equation) is zero, implying that fluid particles are not accelerating at 
all in this flow field, and linearizing the Navier-Stokes equation. Also notice that 
we have replaced the partial derivative operators for the u derivatives with total 
derivative operators because of Eq. 2. 
 You can show in similar fashion that every term in the r momentum equation 
and in the θ momentum equation goes to zero. 

Step 4 Solve the differential equations. Continuity, r momentum, and θ momentum 
have already been solved, and thus we are left with Eq. 3 (x momentum). After 
multiplying both sides by r, integrating, dividing by r, and integrating again, 

Axial velocity component: 2
1 2

sin ln
4
gu r Cρ α
µ

−
= + r C+  (4) 

where C1 and C2 are constants of integration. 
Step 5 Apply boundary conditions from Step 2 above to obtain constants C1 and C2. 

We apply boundary condition (2) first: 

Boundary condition (2): 10
0

Cdu
dr

0= + =   
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Since C1/0 is undefined (∞), the only way for du/dr to equal zero at r = 0 is for C1 
to equal 0. An alternative way to think of this boundary condition is to say that u 
must remain finite at the centerline of the pipe. Again this is possible only if 
constant C1 is equal to 0. 

 1 0C =   

Now we apply the first boundary condition, 

Boundary condition (1):

 2 2
2 2

sin sin0 0        or        
4 4
g gu R C Cρ α ρ α
µ µ

−
= + + = = R   

Finally, Eq. 4 becomes 

Final result for axial velocity: ( )2 2sin
4

gu Rρ α
µ

= − r  (5) 

The axial velocity profile is thus in the shape of a paraboloid, just as in Example 
9-18. 

Step 6 Verify the results. You can plug in the velocity field to verify that all the 
differential equations and boundary conditions are satisfied. 

 

The volume flow rate through the pipe is found by integrating Eq. 5 through the 
whole cross-sectional area of the pipe, 

Volume flow rate:

 ( )
42 2 2

0 0 0

2 sin sin
4 8

R R

r r

g RV udr R r rdr g
π

θ

πρ α π ρ α
µ µ= = =

= = − =∫ ∫ ∫  (6) 

Since volume flow rate is also equal to the average axial velocity times cross-
sectional area, we can easily determine the average axial velocity, V: 

Average axial velocity: 

4

2

2

sin
8 sin

8

R g
V RV g
A R

π ρ α
µ ρ α

µπ
= = =  (7) 

 
Discussion There is no such thing as an “inviscid” fluid. For example, if µ were 
zero in this problem, the axial velocity, volume flow rate, and average velocity would 
all go to infinity since µ appears in the denominator of Eqs. 5 through 7. 
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Review Problems 
 
9-101C 
Solution We are to discuss the connection(s) between the incompressible flow 
approximation and the constant temperature approximation.  
 
Analysis For an incompressible flow, the density is assumed to be constant. In 
addition, the incompressible flow approximation usually implies that all fluid 
properties (viscosity, thermal conductivity, etc.) are constant as well. These 
assumptions go hand in hand because a flow with constant density implies a flow with 
little or no temperature changes and no buoyancy effects. Since viscosity is a strong 
function of temperature but generally a weak function of pressure, the fluid’s 
viscosity is approximately constant whenever temperature is constant. When dealing 
with incompressible fluid flows, pressure variable P is interpreted as the mechanical 
pressure Pm, and we don’t need an equation of state. In effect, the equation of state is 
replaced by the assumption of constant density and constant temperature. 
 
Discussion Mechanical pressure Pm is determined by the flow field, not by 
thermodynamics. 

  
 
 
9-102C 
Solution We are to name each equation, and then discuss its restrictions and its 
physical meaning.  
 
Analysis (a) This is the continuity equation. The form given here is valid for 
any fluid. It describes conservation of mass in a fluid flow. 
 

(b) This is Cauchy’s equation. The form given here is valid for any fluid. It describes 
conservation of linear momentum in a fluid flow. 
 

(c) This is the Navier-Stokes equation. The form given here is valid for a specific 
type of fluid, namely an incompressible Newtonian fluid. The equation describes 
conservation of linear momentum in a fluid flow. 
 
Discussion It is important that you be able to recognize these notable equations of 
fluid mechanics. 
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9-103C 
Solution We are to list the six steps used to solve fluid flow problem with the 
continuity and Navier-Stokes equations, for the case in which the fluid is 
incompressible and has constant properties. 
 
Analysis The steps are listed below: 
 

Step 1 Lay out the problem and the geometry. Identify all relevant 
dimensions and parameters. 

Step 2 List all appropriate assumptions, approximations, simplifications, 
and boundary conditions. 

Step 3 Write out and simplify the differential equations (continuity and 
the required components of Navier-Stokes) as much as possible. 

Step 4 Solve (integrate) the differential equations. This leads to one or 
more constants of integration. 

Step 5 Apply boundary conditions to obtain values for the constants of 
integration. 

Step 6 Verify the results by checking that the flow field meets all the 
specifications and boundary conditions. 

 
Discussion These steps are not always followed in the same order. For example, 
in CFD applications the boundary conditions are applied before the equations are 
integrated. 

  
 
 
9-104C 
Solution  
(a) True: The unknowns for an incompressible flow problem with constant fluid 

properties are pressure and the three components of velocity. Density and 
viscosity are constants and are therefore not unknowns. 

(b) False: The unknowns for a compressible flow problem are pressure, the three 
components of velocity, and the density. However, density is a thermodynamic 
function of pressure and temperature. Hence, temperature appears as an 
additional unknown, as does some kind of equation of state. In summary, there 
are actually at least 6 unknowns (P, u, v, w, ρ, and T). We therefore need 6 
equations (continuity, 3 components of Navier-Stokes, equation of state, and 
energy). In addition, fluid properties such as viscosity may change as well, and 
we need either more equations or some kind of look-up table for these properties. 

(c) False: Cauchy’s equation contains additional unknowns – the components of the 
stress tensor, which must be written in terms of the velocity and pressure fields 
through some kind of constitutive equation. 

(d) True: For an incompressible flow problem involving a Newtonian fluid, there are 
only 4 unknowns (P, u, v, and w). We therefore need only 4 equations (continuity 
and 3 components of Navier-Stokes). 
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9-105C 
Solution We are to discuss the relationship between volumetric strain rate and 
the continuity equation. 
 
Analysis Volumetric strain rate is defined as the rate of increase of volume of a 
fluid element per unit volume. In a compressible flow field, the volume of a fluid 
particle may increase or decrease as it moves along in the flow, but its mass must 
remain constant. (This is a fundamental statement of conservation of mass of a 
system, since the fluid particle can be thought of as an infinitesimal system.) 
Mathematically it turns out that volumetric strain rate is the sum of the three 
normal strain rates, and is identically zero for incompressible flow (density 
cannot change, and hence volume cannot change). The continuity equation is based 
on the same fundamental principle of mass conservation. It is a differential form of 
the equation of conservation of mass. Its incompressible form also shows that the sum 
of the three normal strain rates must be zero. On the other hand, if the density is not 
constant, the sum of the three normal strain rates is not zero, but is still equal to the 
volumetric strain rate, which is also non-zero. 
 
Discussion Volumetric strain rate is derived and discussed in Chap. 4 as a 
kinematic property. 

  
 
 
9-106 
Solution For a given geometry and set of boundary conditions, we are to 
calculate the velocity and pressure fields, and plot the velocity profile.  
 
Assumptions The assumptions are identical to those of Example 9-17. We do not 
list them here. 
 
Analysis We obtain the velocity and pressure fields by following the step-by-
step procedure for differential fluid flow solutions. Everything is identical to Example 
9-17 except for the boundary condition at the wall. Boundary condition (1), the no-
slip condition, becomes: at x = 0, u = v = 0. w = V. Steps 1 through 4 are otherwise 
identical, and the result is 

Result of integration of z momentum: 2
1 22

gw x C xρ
µ

= + +C

V

 (1) 

We continue, beginning with Step 5: 
 

Step 5 We apply boundary conditions (1) and (2) from Step 2 to obtain constants C1 
and C2, 

Boundary condition (1):  2 20 0         w C V C= + + = =  
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FIGURE 1 
Velocity profiles of Problem 9-106 – an oil 
film falling down a moving vertical wall. 
For all three Reynolds numbers, Fr = 0.5. 

Boundary condition (2): 1 10           
x h

dw g ghh C C
dx

ρ ρ
µ µ=

 = + = = −


  

Finally, Eq. 1 becomes 

Result: ( )2 2
2 2

g g gxw x hx V x hρ ρ ρ
µ µ µ

V= − + = − +  (2) 

Since x < h in the film, the first term in Eq. 2 is negative, but the second term is 
positive. Depending on the relative magnitude of the terms, part or all of the 
vertical velocity may be positive. The pressure field is still P = Patm everywhere. 

Step 6 Verify the results. You can plug in the velocity field to verify that all the 
differential equations and boundary conditions are satisfied. 

 

 We nondimensionalize Eq. 2 by inspection: we let x* = x/h and w* = 
wµ/(ρgh2). Eq. 2 becomes 

Nondimensional velocity profile: ( ) 2

** * 2
2
x Vw x

gh
µ

ρ
= − +  (3) 

We verify by inspection that when V = 0, Eq. 3 reduces to the velocity profile of 
Example 9-17. After some algebra we see that Eq. 3 can be re-written as 

Final nondimensional velocity profile: ( )
2** * 2

2 R
xw x= − +

Fr
e

 (4) 

where Froude number Fr = V /  and Reynolds number Re = ρVh/µ. We plot the 
nondimensional velocity field in Fig. 1 for Fr = 0.5 and Re = 0.5, 1.0, and 5.0.  

gh

 
Discussion Notice that the velocity profile has zero slope at the free surface 
regardless of the values of Fr and Re. For large enough V, the net mass flow rate is 
upward rather than downward. 
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9-107 
Solution We are to calculate the volume flow rate per unit width of oil falling 
down a moving vertical wall, and then calculate the wall speed such that the net 
volume flow rate of oil is zero.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The wall is 
infinitely wide and very long so that all of the parallel flow, fully developed 
approximations of Problem 9-106 hold. 
 
Analysis We calculate the volume flow rate per unit width by integration of the 
velocity: 

Volume flow rate per unit depth: 

 ( )
0 0

2
2

h hV gxwdx x h V dx
L

ρ
µ

 
= = − + 

 
∫ ∫  = 

3

3
ghVh ρ
µ

= −  (1) 

The volume flow rate is zero when the two terms in Eq. 1 cancel, 

Zero volume flow rate: 
3

0  when  
3

V gVh
L

ρ h
µ

= =  or 
2

3
ghρV
µ

=  (2) 

For an oil film of thickness 5.0 mm with ρ = 888 kg/m3 and µ = 0.80 kg/(m⋅s), we 
calculate V using Eq. 2, 

Result for V: 
( )( )( )

( )

23 22 888 kg/m 9.81 m/s 0.005 m

3 3 0.80 kg/m s
ghV ρ
µ

= = =
⋅

0.091 m/s  (3) 

 
Discussion For any V greater than the value calculated in Eq. 3, the net oil flow is 
up, while for V less than this value, the net oil flow is down. Since viscosity is in the 
denominator of Eq. 2, a low viscosity liquid (like water) would require a very large 
vertical velocity in order to achieve a net upward flow of the liquid. 
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9-108 
Solution We are to define a ψ that satisfies the continuity equation, and 
increases in the positive z direction when the flow is from right to left in the x-z plane. 
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-z plane. 
 
Analysis We propose the following stream function, 

Stream function:           u w
z x
ψ ψ∂ ∂

= − =
∂ ∂

 (1) 

We verify that the continuity equation is satisfied by Eq. 1, 

Steady, incompressible, 2-D continuity equation: 
2 2

0

x z z x

u w
x z
ψ ψ∂ ∂

−
∂ ∂ ∂ ∂

∂ ∂
+ =

∂ ∂
 

(2) 

The only restriction is that ψ must be a smooth function of x and z. We check if we 
picked the proper signs by examining freestream flow from right to left in the x-z 
plane: 

Freestream flow:         0        u U w Uz Cψ= − = = +  (3) 

where U is a positive constant and C is an arbitrary constant. Thus we verify that as z 
increases, ψ increases, and the flow is from right to left as desired. 
 
Discussion If we had defined ψ with the opposite signs of Eq. 1, the flow would 
be from left to right as ψ increases. 
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9-109 
Solution We are to determine a relationship between constants a, b, c, d, and e 
that ensures incompressibility, and we are to determine the primary dimensions of 
each constant.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible (under certain 
restraints to be determined). 
 
Analysis We plug the velocity components into the incompressible continuity 
equation, 

Condition for incompressibility:

 
2 2

2 2

3 2

0          3 2 0

az dz exzcxz

u v w az cxz dz exz
x y z

+

∂ ∂ ∂
+ + = + + +

∂ ∂ ∂
=  (1) 

To guarantee incompressibility, the above equation must be satisfied everywhere. We 
equate similar terms to obtain the following relationships: 

Conditions for incompressibility: 3         2a d c= − = − e  (2) 

 The units are found by observing that each component of the velocity field 
must be dimensionally homogeneous – each term must have dimensions of velocity. 
We examine each term: 
 

{ } { }2 3 LL
t

axz a  = × =  
 

 { } 2

1
L t

a  =  
 

 

{ } { } LL
t

by b  = × =  
 

 { } 1
t

b  =  
 

 

{ } { }3 LL
t

cxyz c  = × =  
 

 { } 2

1
L t

c  =  
 

 

{ } { }3 3 LL
t

dz d  = × =  
 

 { } 2

1
L t

d  =  
 

 

{ } { }2 3 LL
t

exz e  = × =  
 

 { } 2

1
L t

e  =  
 

 

 
Discussion If Eq. 2 were not satisfied, the given velocity field might still 
represent a valid flow field, but density would have to vary with location in the flow 
field – in other words the flow would be compressible. 
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9-110 
Solution We are to simplify the incompressible Navier-Stokes equation for the 
case of rigid body motion with arbitrary acceleration.  
 
Analysis We begin with the vector form of the incompressible Navier-Stokes 
equation, 

Incompressible Navier-Stokes equation: 2DV P g V
Dt

= −∇ + + ∇ρ ρ µ  (1) 

In rigid body motion, V  is not zero, but since the liquid moves as a solid body there 
is no relative motion between fluid particles. Thus the viscous term in Eq. 1 
disappears. (Fluid particles do not rub against each other or shear against each other 
in any way, so the viscous term must vanish.) The material acceleration term 

 is the acceleration following a fluid particle; hence it is identical to the 
imposed acceleration 
DV / Dt

a . Finally, g gk= − . Thus Eq. 1 reduces to 

Equation for rigid body acceleration: P gk aρ ρ∇ + = −  (2) 

 
Discussion You can verify that Eq. 2 agrees with the rigid body acceleration 
equation of Chap. 3. 

  
 
 
9-111 
Solution We are to simplify the incompressible Navier-Stokes equation for the 
case of hydrostatics.  
 
Analysis We begin with the vector form of the incompressible Navier-Stokes 
equation, 

Incompressible Navier-Stokes equation: 2DV P g V
Dt

= −∇ + + ∇ρ ρ µ  (1) 

In hydrostatics, V  = 0 everywhere (no flow). Thus the first and last terms in Eq. 1 
disappear. In addition, g gk= − . Thus Eq. 1 reduces to 

Hydrostatics equation: P gkρ∇ = −  (2) 

 
Discussion We verify from Eq. 2 that pressure does not change horizontally, but 
increases downward. 
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9-112 
Solution We are to specify boundary conditions in terms of stream function.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible 3 The flow is two-
dimensional. 
 
Analysis (a) For 2-D incompressible flow the difference in the value of the 
stream function between two streamlines is equal to the volume flow rate per unit 
width between the two streamlines. Since the entire flow is confined between the 
lower and upper channel walls, we know that stream function ψ must be constant 
along the upper wall. We calculate ψ on the upper channel wall as follows: 

 ( )1 upper lower
1 1 1

1 1V VV
H W H W H

ψ ψ= = = −  (1) 

from which 

ψupper: ( )( )upper lower 1 0 0.12 m 18.5 m/sH Vψ ψ= + = + = 22.22 m /s  (2) 
 

(b) Since the inlet flow is uniform, ψ must increase linearly from ψlower to ψupper along 
the left edge of the computational domain. In equation form, 

ψleft: 
( ) 2

upper lower
left lower

1

2.22 m /s
0.12 m

y y
H

ψ ψ
ψ ψ

−
= + =  = ( )18.5 m/s y  (3) 

We notice that Eq. 3 could have been obtained directly from u = V1 = ∂ψ/∂y. 
 

(c) We have some options for the right edge of the computational domain. If that 
boundary is far enough away that it does not adversely affect the flow near the sudden 
contraction, we might specify a uniform velocity distribution along the right edge, 
similar to Eq. 3 above, but with a higher velocity determined by conservation of mass, 

Average outlet speed: ( )1
2 1

2

0.12 m18.5 m/s 48.26 m/s
0.046 m

H
V V

H
= = =   

In other words, we would specify 

ψright: (right 48.26 m/s yψ = )  (4) 

Eq. 4 is not a very good boundary condition because we know that viscous effects 
will surely slow down the flow near the walls – the velocity profile at the outlet will 
not be uniform. 
 A much better boundary condition (if the code permits it) is to specify that ψ 
not change with x along the right edge of the domain. Mathematically, we would 
specify 

ψright: 
right 0
x

ψ∂
=

∂
 (5) 

You can see from the definition of ψ that Eq. 5 is identical to forcing velocity 
component v to be zero at the outlet. In other words, we specify that the flow at 
the outlet is parallel. 
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 A third option would be to locate the right edge very far downstream so that 
the flow there is fully developed channel flow, for which we can specify the stream 
function as a function of y along the edge. ψ can be obtained from Problem 9-43. 
 
Discussion CFD and boundary conditions are discussed in detail in Chap. 15. 

  
 
 
9-113 
Solution For each equation we are to tell whether it is linear or nonlinear and 
explain.  
 
Analysis (a) The incompressible continuity equation is 

The incompressible continuity equation:  0V∇⋅ = (1) 

This equation is linear. There are no nonlinear terms. 
 

(b) The compressible continuity equation is 

The compressible continuity equation: ( ) 0V
t

∂
+∇ ⋅ =

∂
ρ ρ  (2) 

This equation is nonlinear. The second term has a product of two variables, ρ and 
 – this is what makes the equation nonlinear. V

 

(c) The incompressible Navier-Stokes equation is 

The incompressible Navier-Stokes equation: 2DV P g V
Dt

= −∇ + + ∇ρ ρ µ  (3) 

This equation is nonlinear. The material acceleration term on the left can be 
written as 

The incompressible Navier-Stokes equation:

 ( )
Advective (or convective) partUnsteady or local part

DV V V V
Dt t

∂
= + ⋅∇

∂
 (4) 

The advective part of Eq. 4 contains products of variable V  and derivatives of 
variable V  – this is what makes the equation nonlinear. 
 
Discussion Density is treated as a constant in Eq. 3, and does not affect the 
nonlinearity of the equation. For compressible flow however, variable density causes 
the nonlinearity. 
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9-114 
Solution We are to sketch some streamlines for boundary layer flow.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y plane.  
 
Analysis We can offer only quantitative sketches of the streamlines. Since there 
is no flow reversal, we can be sure that δ(x) is not a streamline. In fact, streamlines 
must cross δ(x). Furthermore, at any given y location above the plate the fluid speed 
decreases as the boundary layer grows downstream. Hence, the streamlines must 
diverge. The bottom line is that the streamlines veer slightly upward away from the 
wall to compensate for the loss of speed in the boundary layer. Streamlines are 
sketched in Fig. 1. 
 

x 

y 
V δ(x) 

δ(x)

Streamlines

Boundary layer  

FIGURE 1 
Streamlines above and within a flat plate 
boundary layer; since streamlines cross the 
curve δ(x), δ(x) cannot itself be a streamline 
of the flow. Furthermore, streamlines within 
the boundary layer veer up because of 
decreasing speeds within the boundary layer. 

 
Discussion Boundary layers are discussed in more detail in Chap. 10. 

  
 
 
9-115E 
Solution For a given axial velocity component in an axisymmetric flow field, 
we are to validate the incompressible approximation, generate the radial velocity 
component, generate an expression for the stream function, and then plot some 
streamlines and design the shape of the contraction.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is 
axisymmetric implying that uθ = 0 and there is no variation in the θ direction. 
 
Properties At room temperature and pressure, the speed of sound in air is about 
1130 ft/s. 
 
Analysis (a) The maximum speed occurs in the test section, where the Mach 
number is 

Mach number: ,

ft120
sMa 0.106
ft1130
s

z Lu
c

= = =  (1) 

Since Ma is much less than 0.3, the incompressible flow approximation is reasonable. 
 

(b) Between z = 0 and z = L, the axial velocity component is given by 

Axial velocity component: , ,0
,0

z L z
z z

u u
u u

L
−

= + z  (2) 
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We use the incompressible continuity equation in cylindrical coordinates, simplified 
as follows for axisymmetric flow, 

Incompressible axisymmetric continuity equation: 
( ) ( )1 0r zru u

r r z
∂ ∂

+ =
∂ ∂

  

After rearranging,  

 
( ) ( ) ,r z ,0z L zru u u u

r r
r z L

∂ ∂ −
= − = −

∂ ∂
 (3) 

We integrate Eq. 3 with respect to r, 

 ( )
2

, ,0

2
z L z

r

u urru f z
L
−

= − +  (4) 

Notice that since we performed a partial integration with respect to r, we add a 
function of the other variable z rather than simply a constant of integration. We divide 
all terms in Eq. 4 by r and recognize that the term with f(z) will go to infinity at the 
centerline of the contraction (r = 0) unless f(z) = 0. Our final expression for ur is thus 

Radial velocity component: , ,

2
0z L z

r

u uru
L
−

= −  (5) 
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FIGURE 1 
Streamlines for flow through an 
axisymmetric wind tunnel contraction. 

(c) The algebra for generating the stream function is identical to that of Problem 9-
61 except for a change in notation. The result is thus 

Stream function: 
2

, ,0
,0 constant

2
z L z

z

u ur u z
L

ψ
− 

= + + 
 

 (6) 

The constant can be anything. We set it to zero for simplicity. 
 

(d) First we calculate the axial speed at the entrance to the contraction. By 
conservation of mass, 

 
2 2

0
,0 0 , ,0 ,     or     

4 4
L

z z L L z z L
D D

u A u A u u
π π

= =   

from which 

 
( )
( )

22

,0 , 2 2
0

1.5 ftft ft120 10.8
s s5.0 ft

L
z z L

D
u u

D
= = × =   

We solve Eq. 6 for r as a function of z and plot several streamlines in Fig. 1, 

Streamlines: 
, ,0

,0

2
z L z

z

r
u u

u z
L

ψ
= ±

−
+

 (7) 

At the entrance of the contraction (z = 0), the wall is at r = D0/2 = 2.5 ft. Eq. 6 
yields ψwall = 33.75 ft3/s for the streamline that passes through this point. This 
streamline thus represents the shape of the nozzle wall, and we have designed 
the nozzle shape. 
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Discussion Since the boundary layers along the walls of the contraction are very 
small, the assumption about negligible friction effects is reasonable. This contraction 
shape should deliver the desired axial flow speed quite nicely. 
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Solution We are to determine the primary dimensions of ψ, nondimensionalize 
Eq. 1, and then plot several nondimensional streamlines for this flow field.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-
dimensional in the x-y or r-θ plane. 
 
Analysis  
(a) There are several ways to calculate the primary dimensions of ψ. First, from Eq. 
1 we see that  

0

1

2

3

4

-2 -1 0 1 2
x* 

y* 

ψ* = 0 

ψ* = −π 

ψ* = −2π  
FIGURE 1 
Nondimensional streamlines for flow into a 
vacuum cleaner attachment; ψ* is 
incremented uniformly from 2π (negative x 
axis) to 0 (positive x axis). 

Dimensions of stream function: { }
3 -1 2L t L

2 L
V

L
ψ

π
     = = =    
      t





 (2) 

We could also use the definition of ψ. Since velocities are obtained by spatial 
derivatives of ψ, ψ must have an additional length dimension in the numerator 
compared to the dimensions of velocity. This reasoning also yields {ψ} = {L2/t}. 
 

(b) The nondimensional form of the stream function is straightforward. Eq. 1 
becomes 

Nondimensional stream function: 
2

sin 2* arctan
1cos 2
*r

θψ
θ

= −
+

 (3) 

 

(c) We solve Eq. 3 for r*, 

Equation for nondimensional streamlines: 
( )

( )
tan *

*
sin 2 cos 2 tan *

r
ψ

θ θ ψ
−

= ±
− −

 (4) 

We pick the positive root to avoid negative radii. We plot several streamlines in the 
desired range in Fig. 1. The range of ψ* is 0 on the positive x axis to –π on the 
positive y axis to –2π on the negative x axis. 
 
Discussion The point (x = 0, y = b) is a singularity point with infinite velocity. 
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Solution We are to write Poisson’s equation in standard form and discuss its 
similarities and differences compared to Laplace’s equation. 
 
Analysis Poisson’s equation in standard form is 

Poisson’s equation: 2 sφ∇ =  (1) 

where φ is a dependent variable that is a function of space, ∇2 is the Laplacian 
operator, and s is the right hand side of the equation, which may be a function of 
space, but cannot be a function of φ itself. Poisson’s equation is similar to Laplace’s 
equation in that the left hand sides are identical. The difference is that Poisson’s 
equation has a non-zero right hand side whereas the right hand side of Laplace’s 
equation is zero. Note that Poisson’s equation reduces to Laplace’s equation if s = 0. 
 
Discussion We discuss Poisson’s equation briefly in this chapter in relation to 
pressure correction algorithms used by CFD codes. 
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Solution We are to analyze this problem three ways: with the control volume 
technique, with the differential technique, and with dimensional analysis, and we are 
to compare the results.  
 
Assumptions 1 The flow is steady. 2 The flow is axisymmetric, incompressible, 
Newtonian, laminar, parallel, and fully developed (u = u(r) only). 
 
Analysis (a) We use the head form of the energy equation from point 1 to point 
2. Since there are no pumps, turbines, or minor losses the energy equation reduces to 

Energy equation: 
2 2

1 1 2 2
1 1 2 22 2 f

P V P V
z z

g g g g
α α

ρ ρ
h+ + = + + +  (1) 

The pressure terms cancel since P1 = P2 = Patm. The velocity terms cancel since the 
flow is fully developed. Upon substitution of the major head loss equation we have 

Reduced energy equation: 
2

1 2 2f
L Vz z z h f
D g

∆ = − = =  (2) 

But for fully developed laminar pipe flow we know from Chap. 6 that the Darcy 
friction factor f = 64/Re. Thus Eq. 2 becomes 

 
2 2

2

64 64 32
Re 2 2

L V L V LVz
D g VD D g D g

µ µ
ρ ρ

∆ = = =   

from which we can solve for average velocity V through the pipe, 

V from control volume analysis: 
2

32
gD zV

L
ρ

µ
∆

=  (3) 
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(b) An exact analysis of this flow was performed in Problem 9-100. We refer to the 
solution of that problem and do not show the details here. The average velocity 
through the pipe was found to be 

 
2

sin
8
RV gρ α
µ

=   

But R = D/2, and from Fig. P9-118 we see that sinα = ∆z/L. Thus, our result is 

V from differential analysis: 
2

32
gD zV

L
ρ

µ
∆

=  (4) 

The agreement with the result of Part (a) is exact. 
 

(c) Finally we perform a dimensional analysis. We leave out the details, providing 
only a summary here; this is a good review of the material of Chap. 7. There are 7 
parameters in the problem: V as a function of ρ, g, D, ∆z, µ, and L. There are three 
primary dimensions represented in the problem, namely m, L, and t. Thus we expect 
7-3 = 4 Πs. We choose three repeating variables, ρ, g, and D. The Πs are 

Dimensionless parameters:

 1 2 3                     
D gDV z

D DgD
ρ

µ
∆

4
L

Π = Π = Π = Π =   

The first Π is a Froude number and the second Π is a Reynolds number. The 
dimensionless relationship is 

Result of dimensional analysis: , ,
D gDV zf

D DgD
ρ

µ

 ∆
=   

 

L  (5) 

To put the Πs of Eq. 5 into the form of Eq. 4 we do the following:  

Relationship between Πs: 

 2 3
1

4

  
32 32

D gDV z
D LgD

ρ
µ

Π Π ∆
Π = → =

Π
D  → 

2

32
gD z

L
ρ

µ
V ∆
=  (6) 

Thus we see that dimensional analysis is indeed consistent with the exact solution. Of 
course, we could not know the relationship of Eq. 6 by dimensional reasoning alone. 
 
Discussion The agreement between Parts (a), (b), and (c) is satisfying and 
emphasizes three different approaches to the same engineering problem. 
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Solution We are to analyze this problem two ways: with the exact (differential) 
technique, and with dimensional analysis, and we are to compare the results.  
 
Assumptions 1 The flow is steady. 2 The flow is incompressible, Newtonian, 
laminar, parallel, and fully developed (u = u(y) only, where x is in the direction of 
motion and y is normal to the direction of motion). 3 We ignore aerodynamic drag on 
the block. 
 

 

α 

W 

τA x 

 
FIGURE 1 
Free-body diagram of the block. 

Analysis (a) We draw a free-body diagram of the block in Fig. 1 and sum all 
the forces acting on it. There are only two forces in the x direction: the x component 
of weight Wsinα and the force τA due to viscous shear at the bottom surface of the 
block. Since the block slides at constant speed, these two forces must balance. 

Force balance: sin VAW A
h

µα τ= =  (1) 

where we have used the exact analytical expression for the shear stress for Couette 
flow, namely τ = µ(du/dy) = µV/h. Solving for h, 

Exact solution for h: 
sin
VAh

W
µ

α
=  (2) 

 

(b) We perform a dimensional analysis leaving out many of the details. There are 6 
parameters in the problem: h as a function of V, A, W, α, and µ. There are three 
primary dimensions represented in the problem, namely m, L, and t. Thus we expect 
6-3 = 3 Πs. We choose three repeating variables, V, A, and W. The Πs are 

Dimensionless parameters: 1 2              h V A
WA

µ
3 αΠ = Π = Π =   

The dimensionless relationship is 

Result of dimensional analysis: ,h V Af
WA

µ α
 

=   
 

 (3) 

To put the Πs of Eq. 3 into the form of Eq. 2 we do the following:  

Relationship between Πs: 2
1

3

  
sin sin

h V
WA
µ A

α
Π

Π = → =
Π

 → 
sin
VAh

W
µ

α
=  (4) 

Thus we see that dimensional analysis is indeed consistent with the exact solution. Of 
course, we could not know the relationship of Eq. 4 by dimensional reasoning alone. 
 
Discussion The agreement between Parts (a) and (b) is satisfying and emphasizes 
two different approaches to the same engineering problem. 
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