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Dynamic schematization and the mathematical description of the process of controlling the force func-
tion of an internal combusion engine are the most complex and least developed questions in problems in-
volving the dynamics of sets of engines with internal combustion engines. We will understand below by a
force function the dependence of the engine torque oa the ecrank angle, i.e., the force function has the
meaning of a generalized force.

An analytic description of the force function of an internal combustion engine is given only for the
partial dynamics-analysis problem for the residence characteristics in steady-state velocity conditions
in existing techniques of dynamically calculating sets of engines [5]. In this case the reliability of results
from studying the amplitude and phase spectra of a motor unit is ensured only for engines for which ex-
tensive experimental data have been accumulated. We note that the analysis of nonresonance conditions,
for which the representation of the force function in the form of a Fourier series is an unnatural and cum-
bersome formalization of the actual processes, is also of significant interest in actual dynamic calcula-
tions of sets of engines with an internal combustion engine,

Dynamic schematization of the control process for the force function of an internal combustion engine
does not take into account the pulsed nature of this process in well-known techniques, such pulsing being
able to significantly affect the dynamic stability of the automatic speed regulation system under definite
conditions. This is particularly substantial for systems with an oscillating-active control object within
the effective frequency range [3].

It is necessary to consider interaction between the thermodynamic and mechanical systems in describ-
ing the force function of an internal combustion engine. The processes of the filling of the engine cylinders
with a gas charge (air or fuel —air mixture) and the compression of this charge, fuel combustion, expansion
of the combustion products, and clearing of the cylinders constitute the fundamental functional meaning of
the thermodynamic system. The mechanical system of an internal-combustion engine is characterized by
structural complexity and a multitude of relations. However, only the geometric characteristics of the
crank gears are of importance for a force analysis of the working process of an internal-combustion engine.

The thermodynamic processes in the engine cylinders generate a force function, or torque, when in-
teracting with the crank gears, this torque being discretely distributed along the length of the crank he-
tween its crankshafts, To clarify the basic laws of the force characteristics without restricting the gener-
ality of the analysis, let us consider an internal-combustion engine with central crank gears (Fig. 1a),
The active thermodynamic processes that basically determine the magnitude and nature of the force func-
tion of the internal-combustion engine are realized at the stages of gas-charge compression in the cylin-
ders (compression stroke), fuel combustion, and expansion of combustion products (power stroke).

Gas pressure in the engine cylinder varies, in the course of gas-charge compression during the
k~-th working cycle, in accordance with the equations [4]
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Fig. 1

a, =(2mk—1)n; b, =2mkn; P = arcsin(Asina). @)

Here o is the engine crank angle, counted off from the upper dead point of the piston of the given cylinder,
Pep ispressure at the end of the compression stroke, R and L are crankshaft radius and length of the con-
necting rod of the crank gear, n is the mean value of the compression polytropic exponent, £ and m are
the compression and stroke ratio of the internal-combustion engine, m =1 for two-stroke and m=2 for
four-stroke engines.

The moment of resistance of the gas forces of a single cylinder during the compression stroke is
determined from the equation

M (@) =V L(o)p, (@) =€la,b,l, @)
where ch =2RF is the working volume of the c¢ylinder, F is piston area, and I'w) =0.5(sine +cosa tan g),

Let us call the expression

Mi(e)  T(o)
K (@) = —~ = ——— when a € [ay, b;] 3
Bey D@ @
the dimensionless compression force function of an internal-combustion engine, while
K(a)=0when a¢fl +4(k—1)n, (4k—l)al ()
for four-stroke engines.

The odd function K(a)describes the effect of a conditional incomplete working process realized on the basis
of an ideal, reversible thermodynamic cycle, that is, gas-charge compression during the compression
stroke;gas expansion inthe piston power stroke in the absence of fuel losses and combustion, The laws of
the fuel combustion process in the cylinders of an internal-combustion engine are schematized by a con-
ditional power cycle with two-phase combustion [4]. The first phase is realized by placing the piston near
the upper dead point and is depicted on the V vs s diagram as an isochoric process at the end of which gas
pressure reaches the value

, P.= P )
(\, is the degree to which gas pressure increases during fuel combustion).

The second phase of fuel combustion is described by an isobaric process with constant pressure p,
and a variation of the current volume of the working fluid V within the limits

1gov<go, 6)

where V:V/Vch, Veh is the volume of the combustion chamber, and p is the degree of preliminary expan-
sion of combustion products.

Condition (6) is equivalent during the k-th power cycle to the inequality
O < K 0y + Gy {7

Here

e—1
ETE=DG+D

e =20k—1)mn;, a,~2
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Gas pressure in a cylinder of an internal-combustion engine is characterized by the dependence
P, = ?\.zp“’%hD—q when a€(c,+@, ¢+ (8)
{(q is the mean value of the expansion of the polytropic exponent) at the end of the fuel combustion process,

The indicated torque of the internal-combustion engine due to gas forces of a single cylinder com-
pleting effective positive work as well as the compensating thermodynamic and mechanical losses of the

k-th power cycle has the form

M, (@) = YT (@) [p, (@) — p, (@)] when #€[6,:¢, +n]. ©)
Here
— pz When @ E [Ck’ Ch + az]a
P () {Pp when a>>¢,+ o,

To transform the expression for M, ) to a more convenient form, we will use the well-known depen-
dence of the mean indicated pressure of the power cycle of an internal-combustion engine [4];

}‘zpch P 1—q }‘;—1 1—n ]
P;=8~1{P—1+£}:—1(1*5 )—‘;1j‘1‘(1—“S ) (10)

where 6 =¢/p.

Setting p =1 and q =n when p; =0 in Eq. (10) from self-evident physical concepts, we determine the in-
dicated torque of an internal-combustion engine due to the gas forces of a single cylinder based on Eqs. (5)~
(10,

. oM, dp, Or, GT (@)
Mz(“):‘gg—(ﬁ;'api = Pley & (11)
Here
02{ 1 when @€y Cp + a.l; G= - €—D@E—1) .
Dp_l when a’E(ck +“zvch+n]; (P"—l)(q-—l)—l-P(l——ﬁl—q)
We will call the expression
M,(@) _ GI'(a) .
S(CZ) — {—‘5:\7:; - _O_'q_—Whena E [Chs Cy + ﬂ}: (12)

0 when @ £{¢, -+ 1, 03

the dimensionless indicated force function of an internal-combustion engine.
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(E) xplt! The force effect of the active indicated power cycle due to
-1 N ) fuel combustion followed by expansion of combustion products and
a conversion of thermal energy into mechanical energy is described
based on the function S@).
o il e B ol (22, Numerical analysis of the functions K¢) and Se) in the space
b - ' of the parameters &, A, n, q, and p for different classes of internal-
combustion engines (diesels, carburetor, and gas engines) demon-
X strated that these functions are not very sensitive to variations in

— the parameters A, n, q, and p. The engine compression ratio ¢

| exerts the determining influence on the guantitative characteristics
- S ,r X = of these functions. Our resulis reasonably agree with experiments
!

that have demonstrated that the compression ratio of the y coor-
dinate of the curves (2) and (9) are connected, correspondingly,
¢ with the values p,y, and p; by nearly linear dependences [5] for inter-

Fig. 4 nal combustion engines of the same type.

Studies have shown that, based on the above, the compression and indicated dimensionless force func-
tions of an internal-combustion engine are approximated to within a high degree of accuracy by the equations
K (o) == % forz €Xp (— §p0ty) — 0y €Xp (— Lnaty)l; »
S (@) = %% exp (— L&), 13)
where

24

&, =& —2mak (x);, ay=2MR—a, x= e

and E (x) is the integral part of x.

The coefficients %, £y, and ng, ¢ g found based on minimizing the standard deviation of the approxi-
mating functions on the segment [0, 27 ) are linear dependences on ¢ for internal-combustion engines with
central crank gears and for rotary-piston [2] and rod-free [1] internal-combustion engines:

Wk=dk+ek8; Ckafk'{-gka;

(14)
%, =d 4 ez L.=F+ge

The coefficients dg. ey. fx. and gk, and dg, eg, fs, and gg have the values
d,=099% e =0008 f,=14% g,~0083
d,=1.62; e =028 [ =143; g =0.062
for internal combustion engines with central crank gears (Fig. 1a},
d,=037; e, =0.0055 [, =078 g,= 0,055;
d,=057; ¢ =0.086; [, =077; g =0.043
for rotary piston engines (in désm-ibing the force function of a single chamber, Fig. 1b), and
d, =0.79; e, = 0.0067; f,=125; g,~0,074;
d,=131; €=0% f=1.16; g, =0.065-
for rod-free engines (in describing the first function of a single cylinder,r Fig. 1c).

The dependences ng, £k, and ng, {g are as follows for the force function of the lateral cylinder of
an internal-combustion engine with "pull-type” crank gears:

%, = 1.12 — 0.05y — (0.0027 - 0.0019y) ¢;
4, = 1,38 + 0.092e; %, = 1.9—0.12y 4-0.31¢;
zs = 1.55—0.027y 4 (0.062 + 0.0057) ¢,
where v is the camber angle in radians for a block of pull-type cylinders (Fig. 1d).
The value of m in Egs, (13) must be set equal to three in analyzing rotary-piston internal-combustion

engines,
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The force function ¢, @) that can be generated by the power process in a single cylinder of an internai-~
combustion engine can be represented in the form (Fig. 2)

(pl (a) : ch [%hK (06) -+ pls (O()], (15)_
where peh andpj are, inthe general case, functions of the high-velocity and load conditions of the engine.

It can be easily proved that force functions of the type of Eq. (15) correspond to the general formal-
ism of Lagrange mechanics as forces having the potential II

= chUg:h(Gk,x - Gk.y) + piGS,x]' (16)
Here

4

G =ﬁ(a+i\exp(—€a) =k j=x1)
I R b s I=no

We may describe, using Eq. (15), the general force function of any in-line engine having z cylinders
(chambers) as a set of z force functions (15) acting on the corresponding crankshaft throw. Each of the
constituent functions is shifted in argument in accordance with the distribution diagram of ignitions for cy~-
linders (chambers) of the engine, The sum of the z; force functions of the form (15). shifted relative to
each other in accordance with the ignition order in the z; cylinders acting on the crank, act on each of its
erankshaft throws in the case of a multi-in-line internal combustion engine.

A Fourier trigonometric series corresponding to the force function (15) of a single cylinder is the
most effective way of calculating the form of the representation of the force function in estimating the re-
sonance characteristics of a set of engines with an internal-combustion engine. The constituent amplitude
C and phase ¥ spectra of this series can be represented, based on Eq. (15), in the form (Fig. 3)

Cv::1 3—}—35, Wv:arctg% an
v=12..)
Here

p %Y“s (CZ_ 'V?)_“
=R vy =
mn (22 VP t
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4pJeyy % P, %k
By= ‘QQL[”T%? t 5y o
mi (e +vi) Ao (Cs + vi)
v, is the ratio of the frequency of the y-th harmonic component of the Fourier series to the rate of rotation
of the engine.

The solid curves in Figs. 3 and 2 correspond to experiment and the broken curves, to the calculation.

Tt is useful to write the force function of the power process in a single engine cylinder in the form

Dy (@, y) = Pro(®) + P (%, Y) (18)

in dynamically analyzing the automatic control system for the rate of rotation of an internal-combustion
engine. Here & ) is a regular perturbing function, or the unregulated part of the force function deter-
mined from Eq. (15); & p@z, y) is the regulating pulse, or the confrolled component of the force function,
2mnM 7
By (0 y) == — H (@) S(@); (19)
ypump
M. is the mean effective torque of the internal-combustion engine in terms of external characteristics for
the given velocity condition, Ypump is the displacement of the fuel apparatus feeder (fuel pump measuring
rod, throttle) as the load conditions vary from idle to maximal, H) =y(y,) is the fuel delivery function
optes
for diesel engines (3}, H) =ol}1 S y)de is for carburetor and gas engines, oy =ck —ay, o is the fuel —
Q,

k
air mixture injection advance angle in carburetor and gas internai-combustion engines (,~27 for the lat-
ter), ag ls the phase fuel —air mixture delivery period @ =), and y is the current value of the displace-
ment of the feeder relative to the equilibrium position (input signal).
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, The elastic properties of the crankshaft are not taken into account in our analysis of the dynamic prop-
erties of the automatic control system for the rate of rotation of an internal-combustion engine. In this
‘case, the general force function of the engine is the result of summing the force functions of the cylinders
with sequenced period Tg=2mm/zQ @ is the mean angular rate of the engine under these conditions). Thus,
according to Eq. (19), the control process for the regulated component of the general force function of an
internal combustion engine can be considered as a pulsed process with retardation and amplitude modula-
tion [3]. The laws of this control process can be justifiably described by a linear, continuously operating
model [3]. .

Such a continuous linear model (Fig. 4a) consists of two sequentially connected lengths of a directed
action: link A of pure retardation by the magnitude 7y=a(/Q, and static link D (for diesel engines) or L (for
carburetor and gas engines). The input signal is a dimensionless shift x=y/y; of the feeder of the internal-
combustion engine fuel apparatus and is transformed into aun output signal, namely, the regulating force ef-

fect on the crankshaft. The amplitude R () and ¢ () frequency characteristics of the links D and L have the
form

2¢ -
1—g¢?

b

M
RD((‘)) = ﬁga{ H 'llJD((D)=-—arC tg

RL(w)=lSi29|RD(m); P, (@) = 0—9, (0) ((p:szigs; 0= %)

It is necessary to take into account great displacements of the fuel apparatus feeder in solving some
problems in control, Here it is necessary to take into account the nonlinear dependence of the delivery
aptof

funection on displacement y@y) or the integral 5 y@)do. This is taken into account by introducing a non-
G

inertialess link N (Fig. 4b) at the input to the linear model at the level of our schematization of the control
process for the force function of an internal-combustion engine. The plecewise-linear characteristics of
the link N consists of a linear segment with angular coefficient 1and two saturation zones corresponding
to the values x; and x, of the displacement x at which fuel delivery ceases and is cut off (Fig. 4c).
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