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Abstract- Linearized equations of motion for a motorcycle
with small roll angles are derived and used to design a robust
cascade control scheme that stabilizes the motorcycle over a
range of speeds. Stabilization is achieved by measuring the roll
angle and its rate of change, and controlling the steering torque.
The approach is validated via simulations and experiments
performed with a radio-controlled scooter.
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I. INTRODUCTION

Motorcycles are inherently unstable systems subjected to
non-holonomic contact constraints. Due to the non-holonomic
constraints at the point of contact between the tire and the
ground, in absence of slipping only longitudinal movement is
feasible. These make the development of an autonomous or
tele-operated motorcycle especially challenging and very few
studies have been devoted to this topic. The vast majority of
studies related to motorcycles dynamics focus on the stability
of uncontrolled motorcycles and the vibration modes that result
from external disturbances (e.g. side wind). Two modeling
approaches have been used: analytical equations, which are
linearized around small roll and steering angles, and multi-
body representation. The latter typically results in a large
number of state variables and is not suitable for controller
design purposes. The former approach was initiated by
Whipple [1], who was the first to present a fully general set of
equations of motion for a bicycle. Dohring [2] presented a
linear set of motion equations for a motorcycle based on the
Newton-Euler equations. This approach was further
investigated by Weir [3] who assumed that slip was present at
the tire-ground point of contact. Weir further assumed that the
forces at the point of contact are proportional to the slip angle.
An alternative approach based on Lagrange equations was
presented by Neimark and Fufaev [4] and further extended by
Hand [5]. Other models have been developed over the years,
and a thorough critical survey can be found in [5].

As noted before, few studies focused on motorcycle control,
and each study used a custom model. Getz and Marsden [6]
developed a control algorithm for a very simplified bicycle
model, using the steering angle and forward velocity as control
variables. The bicycle was modeled as a point mass, wheels
inertia was neglected, and geometry was simplified in that
steering head angle and trail were both assumed to be zero.
Beznos et al. [7] used two fast spinning gyroscopes as actuators
to keep a bicycle upright. luchi et al. [8] developed a
stabilization controller for a bicycle traveling along a straight
line at a predetermined constant speed. Finally, Yi et al. [9]
presented 2006 a trajectory tracking and balancing control

algorithm for an autonomous motorcycle. They used the
bicycle model derived in [6] and extend it by including rake
angle and trail. A controller based on steering angle and rear
wheel torque was derived in order to track an arbitrary
trajectory while maintaining stability, and the proposed control
system was validated by numerical simulations.

In the present study, the linearized equations of motion for
a motorcycle were developed in a thorough manner using a
Newtonian approach (Section III), and a stabilizing robust
controller was synthesized based on these equations (Section
IV). The control scheme was validated through simulations
(Section V) and implemented on a scooter operated via remote
control (Section VI).

II. EXPERIMENTAL SYSTEM

A 50cc scooter with automatic variable transmission was
retrofitted to be operated by remote control. A microchip
PIC18F8520 microprocessor was installed on the motorcycle
and received throttle, brake and roll angle commands via an
R/C receiver. The roll angle was measured by a dynamic gyro-
enhanced inclinometer (Microstrain FAS-G) and the roll rate
was measured using a gyroscope (Silicon Sensing Systems,
CRS02). Both analog signals were acquired by the
microcontroller at a sampling rate of 10kHz and averaged at
50Hz. Every 20ms, the microcontroller, which was
programmed in C language, issued pulse width modulated
(PWM) commands to the throttle, brake and steering motors
via appropriate H-bridges. Steering, on which this study
focused, was controlled by a 24V DC motor with a 1:45
reduction transmission gear. Fig.1 shows the scooter and its
physical properties are detailed in the Appendix.

Figure 1. Picture of the experimental system
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III. DYNAMIC MODEL

The following assumptions were made for deriving the
equations ofmotion of a motorcycle:

* There exists enough friction between tires and road to
prevent sliding.

* The change of forward velocity is quasi-static.

* The road is flat and horizontal.

* Only small deviations from straight ahead motion
during which the motorcycle is vertical are considered.

* The tires are ofnegligible width.

* The motorcycle is symmetrical.

The motorcycle is viewed as consisting of two sub-
assemblies (Fig. 2):

* The front sub-assembly which includes the front wheel,
the front fork and the steering axis.

* The rear sub-assembly which consists of the rear
wheel, the motorcycle's chassis and the engine.

Using the symbols defined in the Appendix, the lateral
acceleration of whole motorcycle is:

F] +Fxr =m,ht3 -m,lt,6-m dii-mtV6 (1)
In (1), the left-hand terms are the lateral forces exerted on the
tires at the contact points by friction. The first right-hand side
term is the contribution of roll angular acceleration of the
motorcycle, the second term is the contribution ofyaw angular
acceleration of the motorcycle, the third term is centripetal
acceleration of the motorcycle and the fourth term is the lateral
acceleration of front assembly due to steering.

The roll equation is:

Z

ht
z

(m~~~1e'chanical
Cw Trail)

(Wheelbase)

Figure 2. Schematic representation of the motorcycle and definition of the
main variables used in the model

(2)

mthtV0=mtghtX-gmfd V-Cf V+Mx

In (2), the first and second left-hand side terms are the
contributions of the time derivatives of the angular
momentums of the whole motorcycle about the rear contact
point. The third term is the contribution of the time derivative
of angular momentum of the steering assembly about the
steering axis. The fourth term is the gyroscopic moment due to
the yaw angular velocity of the motorcycle and the fifth term
is the gyroscopic moment due to the roll angular velocity of
the front assembly. The sixth term is the moment required for
lateral (centripetal) acceleration of the center of mass. The first
right-hand side term is the moment exerted by the weight of
the leaning motorcycle, the second term is the moment exerted
by weight of the steered front assembly (being out of the
symmetry plane of the motorcycle), the third term is the
moment exerted by the normal force acting at the front contact
point on the steered front assembly and the fourth term
denotes external disturbances roll moment, such as for
instance side-wind.

The yaw equation is:

T X+zzTO+FV+KIxxl+I /A) ,Xi)-(I. si (3)

+mIVVO= -C Fx

In (3), the first and second left-hand side terms are the
contributions of the time derivative of the angular momentums
of the whole motorcycle about the rear contact point. The third
term is the contribution of the time derivative of the angular
momentum of the steering assembly about the steering axis.
The fourth term is the gyroscopic moment due to the roll
angular velocity of motorcycle and the fifth term is the
gyroscopic moment due to the steering angular velocity of the
front assembly. The sixth term is the moment required for the
lateral (centripetal) acceleration of the center of mass. The
right-hand side of (3) is the moment exerted by the lateral
force at the front wheel contact point about the Z-axis.

The equation for the steering torque (front assembly) is:

F,yX+ FOzO+ F,, V+ ICl r c X2sin+(

+mfd V 0 = MY + Cf Fxf - giX + gsinkuy

In (4), the first, second and third left-hand side terms are the
contributions of the time derivatives of the angular momentum
of the front assembly about the steering axis. The fourth and
fifth terms are the gyroscopic moments due to the roll and yaw
angular velocity of the front assembly, respectively. The sixth
term is the moment required for lateral (centripetal)
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acceleration of the front center of mass. The first right-hand
side term is the steering torque, the second term is the moment
exerted by the front lateral force at the front wheel contact
point, and the third and fourth terms are the moments exerted
by the normal force and by the weight of the front assembly
when out of the symmetry plane of the motorcycle.

Assuming no slip between the tires and the road yields a
geometric constraint that can be used to eliminate E as
follows. From Figs. 3 and 4,

O= Cf c W(5)
and therefore:

0 ( iw)\t ~~~~~~~~~~~~(6)
Also,
,/ = vicos (A) (7)
and

tan(83)= (8)
where D is the effective steering angle. For small angles:
Cf= /R (9)

where R is the turning radius, and

/R0 (10)

Combining (7), (9) and (10) yields:

0 =V cos,C>, ( 1)

Summing (6) and (11) yields:

0 f qj+ V COS~C (12)

CfW
~~~~~~~~~~~~~~~~.. (X).....(X)........... .. .. .. ..

reaw

Figure 3. Yaw of rear assembly due to steering of front

Finally, substituting (12) into (2) and (4) yields the
linearized equations of motion that are used to design the
controller:

Roll equation:

Ty3 mtghtx++ ]F,+TCf *+V T C-S (+

-1= cO-mh CJ YZ+Cw CC( rfr, r

'Cos2 mh ]* V2F CosX+,fIJ=2

Cos2A
-Mtht ±g V A/IxjW

(13)

Steering equation:
F, c 1 F ,cosX, C CC]2LF+2FC f +T f j +V F

, +m d C +T=CfCosX+mtlt(-*+ (14)

2 Ca(X69'SiS,nX+m d CsXl+ml CcsX]v [gvSin,n]X+

F'+T 1(, +V ! Cosx+K'+ j { + gvx =M

IV. CONTROLLER DESIGN

A feedback control loop was designed to stabilize the
motorcycle for speeds ranging from 2.5 [m/s] to 6.5 [m/s]. All
the physical properties of the motorcycle, such as masses,
moments of inertia and locations of centers of masses were
measured or determined experimentally (see Appendix). A 5-
15% uncertainty was considered in eight of these parameters
(see Appendix) and the quantitative feedback theory (QFT,
e.g. [10]) approach was used to design a cascade controller as
depicted in Fig. 5, using the software developed in [11].
Following the standard QFT procedure, design specifications
for the outer loop were defined in time-domain and translated
into frequency-domain specifications (Fig. 6). In addition, it
was required that the sensitivity of both loops be smaller than
8 dB for all frequencies, which ensured stability. The feedback
controller of the outer loop (G1) was designed assuming that
the inner loop would be sufficiently regulated so that it could
be approximated temporarily as 1. A simple proportional gain
that brought the bandwidth within the desired range was used
(Fig. 7):

GC =15 (15)

After designing G1, the tolerance and sensitivity bounds for
the inner loops were computed (Fig. 8) and the following
controller was found to meet the specifications:6 Hp ., I + ,, . 6 ............... 1~~~~~~~~~~~~~DC IMlotorcycile

PrflteElr 'o G F 2 F F
6 6it i. rnotOr ~yn;ami cs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~.................

Figure 4. Turning motorcycle viewed from above Figure 5. Cascade control loop
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Figure 6. Design specifications in the time domain (bottom frame) and

frequency domain (top frame)
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Figure 7. Outer loop sensitivity bounds and system controlled with GI under

the temporary assumption that the inner controlled plant =1.

Figure 9 shows the actual outer ioop recalculated with the

controller G2. It can be seen that although the actual inner loop

differed significantly from unity (as assumed at the first design

stage, Fig. 7), the outer loop remained stable and met the

specifications.

Finally, the following prefilter was added to adjust the

system bandwidth according to the specifications (Fig. 10):

F(s) =1.1I 1
(17)

Since the actual controllers were implemented on a digital

microcontroller with a sampling rate of 50 Hiz, G2 and F were

translated into their respective discrete-time forms using the

matched zero-pole translation:

G2(z)=198.1 (z-0.94194) (8
(z 0.67030)

F(z) (z2

0.009962

-Z21.81 z+0.8187)
The loop-shaping design was checked with these discrete

controllers and the loops were found to meet the design

requirements (not shown).
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Figure 8. Inner loop sensitivity bounds and system controlled with GI and G2
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Figure 9. Outer loop sensitivity bounds and system controlled with GI and G2
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Figure 10. Specifications and closed loop with prefilter.

V. SIMULATION RESULTS

Before carrying out actual tests with the motorcycle,

simulations based on (13) and (14) were conducted to check

the ability of the controllers to stabilize the motorcycle over

the desired range of speeds. The Matlab Simulink model is

shown in Fig. 11, and it can be seen that quantizers were

included to account for the resolutions of the sensors and

actuator. Typical results are presented in Figs 12 and 13 that

show the roll angle and the steering angle in response to

a degrees step command at time 0

a 10 Nm steering torque disturbance between t= 3 and

t=3.1I seconds
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Figure 11. Simulilnk block diagram model

* a 100 Nm roll torque disturbance between t = 4 and
t=4.1 seconds.

In Fig. 12 the various curves correspond to different
parameter values and velocities. It can be seen that for all
parameter values and velocities the motorcycle remains stable
despite the strong disturbances.

Figure 13, which presents the steering angle for forward
velocity of 4 [m/s], shows that the initial direction of steering
is opposite to its steady state value, which is due to the non-
minimum phase nature of the steering angle response to a
desired roll angle and is known by motorcyclists as "counter
steering".

It must be emphasized that although much faster
controllers with higher bandwidths could be synthesized to
yield better simulated performances, in practice it was
observed that such controllers resulted in awakening un-
modeled vibration modes of the motorcycle (due to chassis
flexibility) and resonances due to nonlinearities in the loop
(such as the backlash of the steering motor gear, minor as it
may be). In addition, the controllers were intentionally kept as
simple as possible since this allowed operation of the
microcontroller in fixed-point mode, which ensured fast
calculations. Attempts to implement more complex controllers
that required much slower calculations performed in floating-
point mode showed that the disadvantages of the slower
computations outweighed the theoretical benefits of such
complex controllers.

VI. EXPERIMENTS

Experiments using the motorcycle described in Section II
were conducted, and short video clips of these tests can be
found at

These tests validated the ability of the controller to stabilize
the system. However, due to the limited memory space
available in the microcontroller, continuous recording of the
roll angle and roll rate was not possible. Therefore, a data-
logging device is being added for this purpose and detailed
results will be presented in a future paper.

Figure 12. Simulated roll angle for various speeds and parameter values
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Figure 13. Simulated steering angle for speed of4 [m/s]

VII. CONCLUSION

Linearized equations of motion for a motorcycle were derived,
and the various parameters included in the model were
estimated by simulation and/or CAD (Computer Aided
Design) modeling. This model was used to design a robust
cascade feedback controller that stabilizes the motorcycle for
velocities ranging from 2 [m/s] to 6.5 [m/s]. After validation
of the controller through simulation, the controller was
implemented on an experimental radio-controlled scooter and
the tests demonstrated the ability of the controller to stabilize
the system.
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APPENDIX

Model parameters
Parameter Description Measured

Value
Cw Wheel base 1.08 [m]
Cf Mechanical trail 86.53 [mm]
X Steering head angle 270
rr Rear wheel radius 0.205 [m]
Ixxl Front wheel inertia, about 0.0431 [kgm2]

wheel axis
Ir Horizontal distance from rear 0.4 [m] ±15%

contact point to rear COG
hr Vertical distance from rear 0.4096 [m]

contact point to rear center of ±15%
mass

Mr Mass of rear assembly 105.3572 [m]
±15%

yy moment of inertia of rear 4.7235 [kgm2]
assembly, about front COG, ± 15%
measured in rear coordinate
system

Constitutional relationships

F =I cos2A+I sin2A.+I sin2A
F'1 = Iy sinAcosA-Iy cos2A-Iz sinAcosA

Fz'z = Iyyf sin2 A - IYzf sin 2A+ Izzf cos2 A

mt =mr +mf

mrhr+mfhf

/ Mrlr +mflf
it =

-7.

Izzr zz moment of inertia of rear 11.2341
assembly, about front COG, [kgm2] ±15%
measured in rear coordinate
system

'yzr yz product of inertia of rear 0.2204[kgm2]
assembly, about front COG,
measured in rear coordinate
system

mf Mass of front assembly 13.9242 [kg]
±5%

if Horizontal distance from front -0.1073 [m]
COG to front tire contact
point

hf Height of front COG 0.4110 [i]
If xx moment of inertia of front 1.1421 [kgm2]

assembly, about front COG,
measured in front coordinate
system

IByf yy moment of inertia of front 1.1467 [kgm2]
assembly, about front COG, ±15%
measured in front coordinate
system

'zzf zz polar moment of inertia of 0.0530 [kgm2]
front assembly, about front ±15%
COG, measured in front
coordinate system

'yzf yz product of inertia of front -0.0120 [kgm2]
assembly, about front COG,
measured in Front coordinate
sys.

Rf Front wheel radius 0.205 [m]

Polar mass moment of inertia 0.0431 [kgm2]
of rear wheel, about wheel
axis

xv Steering angle
x Roll angle
0 Heading angle ofmotorcycle
d Distance of front COG from 4.5 [mm]

steering axis

T 1+mh2+F' +mfhf2Tyy = Iyy rr yy ff
2

Tz = Izz +mrlr +F +mf( CW + If)
2 ~~~~~~~~2

Tz = Izz +mrlr + F' + mf( CW +I)

FI = -I cosAl-I sinA-mfhfd

FA'Z = -Iyzf i +IF~z sinA+I

FAA=Izz +m d2

V=mfd+m[t Cf
w

cosA+mf (C, +lf)d
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