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FUNDAMENTAL LAWS AND BALANCE EQUATIONS –
APPLICATION TO CLOSED STEADY SYSTEMS 

 

Classical thermodynamics is an axiomatic science; that is, starting from a few basic 
axioms or laws, which are assumed to be self evident and always true, the behavior of 
thermodynamic systems can be predicted. A law is an abstraction of myriads of 
observations distilled into concise statements that are self-evident and certainly without 
any contradiction. We have already come across the zeroth law of thermodynamics, 
which establishes temperature as a thermodynamic property, an arbiter of thermal 
equilibrium between two objects. 

In this chapter we introduce fundamental laws of thermodynamics – conservation 

of mass, conservation of energy or the first law, and the entropy principle or the second 

law. Applied to a generic unsteady open system, the most general a system can be, these 
laws are translated to balance equations of mass, energy, and entropy equations.   

A special class of systems – systems that are closed and steady – is analyzed in this 
chapter with the help of the balance equations. Property evaluation, the central topic of 
the next chapter, is not necessary for such systems. Heat engines, refrigerators, and heat 

pumps are shown to be special cases of closed steady systems as far as overall analysis is 
concerned. Performance related analysis for these devices lead to the concept of 
reversibility and Carnot efficiency, and establishment of the absolute temperature scale.  

As in chapter 1 we will use the animation module of TEST to illustrate concepts, 
and, occasionally, TEST daemons to evaluate properties if necessary. For closed steady 
systems, however, calculations are fairly straightforward as property evaluation can be 
completely avoided. 

Chapter 
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2.1 Balance Equations 

Interactions between a system and its surroundings can lead to observable changes in a 
system. This is illustrated by Anim. 2.A.openUnsteadySystem. The global state, 
represented by the distribution of color inside the system, of a generic, non-uniform, open 
system continuously changes (indicated by the change of color with time) as mass, heat, 
and work cross its boundary. Sometimes, even in the absence of any interaction, an 
isolated system may evolve spontaneously (see Anim. 1.C.isolatedSystem). Fortunately, 
changes in a system, whether spontaneous or driven by interactions, are governed by 
fundamental laws of thermodynamics, specifically, conservation of mass, conservation of 
energy or the first law, and the entropy principle or the second law. Before we introduce 
these laws, let us recapitulate some of the important results from chapter 1 involving 
interactions and their consequences. 

 Mass transfer through a port - its rate given by the familiar formula m AVρ=�  

(sec. 1.2.1) - obviously affects the total mass of a system, which may increase, decrease, 
or remain the same depending on the net rate of transfer. But mass also carries with itself 
all its attributes – properties such as energy, entropy and, for that matter, all extensive 

properties  - that can strongly affect the balance of these attributes in the system at a 

given instant. The rate of transport of various properties (
.

KE,  ,  J S�� , etc.), introduced in 

chapter 1 as part of a flow state, can be expressed through a general transport equation 

(see Anim. 2.A.transportEqn), which relates rate of transport B�  of any extensive 
property (mass, energy, entropy, etc.) with the corresponding specific property  b  as 
follows. 

 
unit of B kg unit of B

       
s s kg

B mb
 

= = 
 

� �  (2.1) 

Properties of a uniform flow, including the rate of transport of energy and entropy, are 
described by an extended flow state introduced in sec. 1.3, which builds upon the 
assumption of local thermodynamic equilibrium or LTE. Beside the transport equation, 
we will develop many other equations relating the properties of an equilibrium state in 
chapter 3. The balance equations developed in this chapter will form the foundation of 
many such relations. 

Beside mass transfer, heat and work transfer are the only remaining interactions. 

The net heat transfer Q� , expressed by Eq. (1.5),  not only affects the energy inventory of 

i e  

BW�  

im�  
em�  

elW�  

Q�  

Fig. 2.1 The generic system – an open, 
unsteady, non-uniform system with all possible 
interactions with its surroundings.  



 2-5 

a system, but will be shown to carry entropy with it. In this regard, recall from sec. 1.2.4 
that heat transfer through the inlet and exit  ports of a system can be neglected and only 
the transfer across the rest of the boundary needs to be considered.  

Work transfer W�  and its different components have been thoroughly discussed in 

sec. 1.2.5 and expressed by Eq. (1.18) as the sum of two broad categories: flow work 
F

W�  

and external work extW� . While the external work consists of easily identifiable boundary, 

electrical, and shaft work, flow work is somewhat invisible. For a closed system, 
F

W�  is 

obviously zero. For an open system, the flow work was added to the rate of transport of 

stored energy ( E� ) in Eq. (1.39), resulting in a new property  - the flow energy j . The 

rate of transport of this flow energy J mj=� �   bundles flow work with energy transport, 

eliminating the need for evaluating 
F

W�  explicitly. For all systems, open or closed, only 

extW� , therefore, needs to be considered. 

In what follows, each fundamental thermodynamic law will be expressed as a 
balance equation, a differential equation that keeps inventory of a certain global 
property – mass for conservation of mass, stored energy for the first law, and entropy for 
the second law. Each equation will be formulated for the most complex system possible -  
an unsteady, non-uniform, open system (see Fig. 2.1 or Anim. 2.A.openUnsteadySystem), 
henceforth called the generic system, having all possible interactions with its 
surroundings. Once a governing equation is obtained in its most general form, it can be 
simplified and customized for any specific system or application. A recapitulation of the 
image analogy (see sec. 1.3.2) for systems and different types of systems illustrated by 
Anim. 1.E.systemsClassified is recommended before we begin development of the 
balance equations.  

2.1.1 Mass Balance Equation  

The conservation of mass principle can be stated through the following simple 
postulate1. 

Mass cannot be created or destroyed.  

To translate this fundamental law into a balance equation, we note that the mass of a 
system can change over time because mass can flow in and out of a system. A balance 

                                                 
1 A postulate is a statement that is self-evident, does not require a proof, and is accepted by everyone. 
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equation must take into account all possible ways for these transfer and storage 
mechanisms. 

Consider the system, shown in Fig. 2.2 (and Anim 2.B.massBalanceEqn) at two 
different instants t  and t t+ ∆ , separated by a short period t∆ . To simplify the 
derivation, only a single inlet and a single exit are considered, a limitation that can be 
readily removed. Also, ignored in these system schematics are the heat and various 
modes of work transfer, interactions that have no bearing on the mass balance of the 
system. The open system of interest is enclosed within the red external boundary. 

Given that the system is unsteady, let the open system have a mass of ( )m t  at 

time t  and ( )m t t+ ∆  at time t t+ ∆ . Assuming the interval t∆  to be small (we will soon 

make it vanishingly small), the mass that enters and leaves the system within that period 

can be expressed as 
i

m t∆�  and 
e

m t∆�  respectively, where 
i

m�  and 
e

m�  are the mass flow 

rates at the inlet and exit at time t . Since there is no other mechanisms through which the 

mass of the system can be affected, ( )m t t+ ∆  can be expressed as (see Fig. 2.2 and try 

different radio buttons in Anim. 2.B.massBalanceEqn) 

 ( ) ( ) [ ]       kgi em t t m t m t m t+ ∆ = + ∆ − ∆� �  (2.2) 

Rearranging and by taking the limit as t∆  tends to zero. 

 

( ) ( )
0

lim

kg
                          

s

i e
t

i e

m t t m t
m m

t

dm
m m

dt

∆ →

+ ∆ −
= −

∆

 
⇒ = −   

� �

� �

  

For multiple inlets and exits, this equation can be generalized by summing over all inlet 
and exit ports, yielding the mass balance equation in its most general form. 

Rate of increase of mass Mass flow rate  Mass flow rate
  in an open system. into the system. out of the system.

kg
                                   

s
i e

i e

dm
m m

dt

 
= −   

∑ ∑� �

����� ����� �����

 (2.3) 

The mass balance equation, thus, expresses the rate of increase of mass in an open system 
as the net rate of transport of mass into the system, which can be visualized through a 
flow diagram such as the one shown in Fig. 2.3, in which the rate term, also known as the 
unsteady term, is represented by the balloon, and the transport terms by the big 

e 

i 

tmi∆�  

)(t  

)(tm  

i 

 

)  ( dtt +  

tme∆�  
t)  ( ∆+tm  

Fig. 2.2 Schematic used for deriving the mass 
balance equation.  

e 

∑ em�
dm

dt
 ∑ im�  

Fig. 2.3 Flow diagram for the mass balance 
equation. The red boundary marks the system. 
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arrows. Although trivial for the mass balance equation, such flow diagrams can be a good 
visualization tool for the more complex energy and entropy equations.   

Just as we used the lake analogy to understand energy, heat, and work in chapter 1 
(Sec. 1.2.4), a checkbook analogy  can be used to remember different terms of a balance 
equation. In this analogy, the unsteady term can be interpreted as the rate of change of the 
account balance as a result of deposits (transport at the inlets) and withdrawals (transport 
at the exit). Since mass cannot be created or destroyed, there is no term in the mass 
balance equation that mimics interest accrued. Mass balance equation, therefore, 
resembles a interest free account (see Anim. 2.B.checkbookAnalogy).  

A balance equation derived for a generic system can be easily customized for 
specific simpler systems. Consider first a closed system. With no possibilities of mass 
transfer, the transport terms on the RHS drop out. Thus,  

 0
dm

dt
= ,  or constantm =  (2.4) 

The mass of a closed system remains constant. Note that for any steady system, the 
global state remaining frozen in time (Anim. 1.E.systemsClassified), the mass of the 
system remain invariant. But the reverse is not always true - a closed system can be 
unsteady even though its mass cannot change.  

Now consider an open, steady system. By definition of steady state, the time 

derivative of all extensive properties, including mass m , must be zero. The mass 
equation simplifies to   

dm

dt

0

i e

i e

m m= −∑ ∑� � ,  or 

What goes in. What comes out.

kg
                

s
i i i e e e

i e

AV A Vρ ρ
 

=   
∑ ∑
������� �������

 (2.5) 

where, m AVρ=�  (Eq. 1.2) is substituted at all the inlet and exit ports. For an open steady 

system, the conservation of mass principle reduces to what goes in is what comes out. For 
a single-flow steady system, that is, for systems with only one inlet and one exit, the 
summation signs can be dropped. 

;
i e

m m=� �   or, ; 
i i i e e e
AV A Vρ ρ=   or, 

kg
      

s
i i e e

i e

AV A V

v v

 
=   

 (2.6) 

For incompressible fluids (SL model), density remains constant and the equation further 

simplifies to 
i i e e

AV A V= , which can be used to understand incompressible flow behavior 

i  

e  

e

i

i

e

eeii

ei

V

V

VAVA

mm

A

A
  

  

  

=

=

=

ρρ

��

 

Fig. 2.4 A constant-density fluid must 
accelerate in inverse proportion to flow area 
in a converging passage. 
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in a variable area passage (see Fig. 2.4). For example, a steady flow of (constant density) 
liquid through a converging duct must accelerate and that through a diverging duct must 
decelerate. However, if the working fluid is a vapor or a gas, change in specific volume 
introduces complexities that will be fully explored in chapter 15 in connection with high 
speed flow of gases and vapor through variable area ducts. 

The mass equation involves several properties of a flow state including one 

thermodynamic property, the specific volume v  (or its inverse – density ρ ). We have to 

wait until the next chapter before we can explore the local equilibrium that exist at a port 
and evaluate a flow state manually. In this chapter, the properties at a flow state will be 
assumed known or will be evaluated using the state daemons. 
 

EXAMPLE 2-1 Application of Mass Balance Equation 

Water enters a cylindrical tank with a cross-sectional area of 10 m2 through two separate 
inlets and leaves through a single exit as shown in the accompanying figure. The 

conditions at the three ports are as follows. State-1: 1 10V = m/s, 2

1 50 cmA = ; State-2: 

2 300V = m/min, 2

2 0.011 mA = ; State-3: 3 500p =  kPa, o

3 20 CT = , 3 7V = m/s, 

3 14 cmD = . Determine (a) the mass flow rate at the three ports and (b) the rate of 

increase in height in m/min if the tank has an inner diameter of 5 m. Assume density of 
water to be constant at 997 kg/m3.  

SOLUTION Analyze the mass balance equations for the open system enclosed by the 
red boundary of Fig. 2.5. 

Assumptions The inlet and exit flows are uniform and in LTE (local thermodynamic 
equilibrium) so that three flow states -  state-1, state-2 and state-3 - can be used to 
describe the flow at the ports. 

Analysis The mass flow rates at the three flow states can be calculated from Eq. (1.2). 

( ) ( )1 1 1 1

50
997 10 ;

10,00

kg
49.85 

s0
m AVρ

 
= = = 

 
�  

( )( )2 2 2 2

300
997 0.011 ;

60

kg
54.84 

s
m A Vρ

 
= = = 

 
�  

( ) ( )
2

3 3 3 3

14
997 7 ;

4 100

kg
107.43 

s
m A V

π
ρ

 
= = = 

 
�  

1 

2  

3  
Fig. 2.5 Schematic for Ex. 2-1. 

h  
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The mass equation, Eq. (2.3), produces. 

1 2 3

kg
49.85 54.84 107.43 2.748 ;

s

dm
m m m

dt
= + − = + − = −� � �  

Since the mass of water in the tank can be expressed as a function of the water level, 

height h  in Fig. 2.5, the unsteady term can be expressed as 

 
( ) ( )d V d Ahdm dh

A
dt dt dt dt

ρ ρ
ρ= = =  

Therefore,  

( )2

1 1 4 1 mm s
2.748 1000 60 

997 5 m mi

mm
8.4 

inn m

dh dm

dt A dtρ π

    
= = − =    − 

    
 

Discussion The negative sign for the rate of change suggests that the water level is 
declining in the tank. The mass of water contained in the sections of the pipes that fall 
within the system boundary can be ignored in this analysis since their amounts remain 
constant. 

 

2.1.2 Energy Balance Equation  

The conservation of energy principle, also known as the first law of thermodynamics, 
can be stated through the following postulates.  

i) The specific internal energy u  is a thermodynamic property.  

ii) The stored energy KE PEE U= + + of a system cannot be created or destroyed, only 

transported by mass, and transferred across the system boundary through heat and work. 

The indestructibility of energy is also known as the energy principle.  

The first postulate establishes the specific internal energy u as one of the descriptors of 
thermodynamic equilibrium. As a corollary of the second postulate, energy of an isolated 

system must remain constant because energy cannot be transported or transferred across 
the boundary nor can it be created or destroyed within the system. Note that there is no 
problem in the redistribution of energy in its different modes within an isolated system, 
as illustrated in Anim. 1-C-isolatedSystem. By providing a complete account of the 
interactions that lead to the change in E , the first law allows us to create an inventory of 
energy in the form of an energy balance equation. 

e 

i 

tQ∆�  

( )E t  

i im j t∆�  

Fig. 2.6 Schematic used for deriving the energy 
balance equation. 

extW t∆�  

i 

e 

( )E t t+ ∆
        tQ∆�  

e e
m j t∆�  

)(t  

)  ( dtt +
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Once again, we represent the generic system of Fig. 2.1 by a considerably 
simplified sketch in Fig. 2.6 at two different instants t  and t t+ ∆  (see Anim. 
2.C.energyBalanceEqn) with the open system of interest being enclosed within the red 
boundary. As before, only a single inlet and a single exit are considered. Likewise, heat 
transfer is assumed to take place from a single heating source  - a formal name for an 
idealized heating source is a thermal energy reservoir  or TER - and external work is 
represented by shaft work.  

Within the interval t∆  the amount of energy transported by mass at the inlet is 

i i iJ t m j t∆ = ∆� � , which includes both transport of stored energy and flow work (see Anim. 

2.C.energyTransport). Similarly, the energy transported at the exit is e i eJ t m j t∆ = ∆� � . With 

the flow work already accounted for in the energy transport terms, energy transfer out of 

the system through work is given by extW t∆� , where extW�  consists of shaft, electricity, and 

boundary work (see Anim. 2.C.workTransfer). The remaining mechanism, heat transfer, 

adds Q t∆�  amount of energy to the system in time t∆ , where Q�  is the net rate of heat 

transfer (see Anim. 2.C.heatTransfer). Taking into account the sign convention of work 

and heat transfer, ( )E t t+ ∆  can be related to ( )E t  through (see Anim. 

2.C.energyBalanceEqn) 

 ( ) ( ) [ ]ext        kJi eE t t E t J t J t Q t W t+ ∆ = + ∆ − ∆ + ∆ − ∆�� � �  (2.7) 

Dividing by t∆ , rearranging, and taking the limit as t∆  tends to zero, we obtain. 

 

( ) ( )
ext

0

ext

lim

kJ
                       kW

s

i e
t

i i e e

E t t E t
J J Q W

t

dE
m j m j Q W

dt

∆ →

+ ∆ −
= − + −

∆

 
⇒ = − + − =  

�� � �

� �� �

  

For multiple inlets and exits, this equation can be generalized by summing, yielding the 
energy balance equation in its most general form. 

Rate of heat
tranRate of increase Energy transported  Energy transported  

of stored energy by mass flow in. by mass flow out.
of the open system.

                     
i i e e

i e

dE
m j m j Q

dt
= − +∑ ∑ �� �

����� ����� �����
� [ ]

( ) ( )

ext

Rate of external 
sfer into work transfer

the system. out of the system.

2

ext

         kW

where,   ke pe ,  and  
2 1000 J/kJ 1000 J/kJ

B O

W

V gz
j h h W W W

−

= + + = + + = +

�
�����

� � �

 (2.8) 

Q�  

∑ iJ�

 
∑ eJ�  

 

dt

dE
 

extW�  

Fig. 2.7 Flow diagram of the energy 
balance equation for a generic system.  
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Physical meaning of different terms of the energy equations can be explored in Anim. 
2.C.energyBalanceTerms by clicking each term. As in the mass balance equation, the 
LHS, the time rate of stored energy, is the unsteady term. On the RHS, the first two terms 
are transport terms, energy transported by mass at the inlets and exits. The last two terms, 
energy transfer across the boundary through heat and external work, are called boundary 

transfer terms. The heat transfer Q�  is the net rate of heat addition due to all possible 

mechanisms while the external work consists of boundary, shaft, and electrical work,  

ext sh el B
W W W W= + +� � � �  (see Eq. 1.18). Observe that the energy equation preserves the sign 

convention for heat and work transfer.  

In words, the energy equation can be stated as follows: the rate of increase of 

stored energy of a generic system is equal to the net rate of transport of energy by the 

flows and the net rate of energy transfer across the boundary through heat and external 

work. Representing the net rate of energy transport by netJ� , this can be expressed in a 

succinct form: 

net ext net

Net transport. Net boundary transfer.
Unsteady term.

                   ;  where,   i e

i i

dE
J Q W J J J

dt
= + − = −∑ ∑�� � � � �
��� �������

�����

 (2.9) 

Like the mass flow diagram, an energy flow diagram can be constructed as 
shown in Fig. 2.7 to visually represent different terms of the energy equation. In our 
checkbook analogy, the unsteady term is analogous to the rate of change of the account 
balance (the balloon in Fig. 2.7), and the transport terms are counterparts of cash deposits 
and cash withdrawals as before. The new boundary transfer terms – heat and external 
work - can be represented by new means of money transfer, say, electronic transfer (for 
heat transfer) and payments through checks (for external work transfer). As with the mass 
balance equation, the account is interest free since creation or destruction of energy is 
forbidden by the first law.  

Derived for an open system, the energy equation, Eq. (2.8), can be readily adopted 
for a closed system by dropping the transport terms. 

 
net

dE
J

dt
= �

0

ext extQ W Q W+ − = −� �� � ,  (2.10) 

Because there is no possibility of any flow work for a closed system, 

FW W=� �
0

ext extW W+ =� � . Often the symbols W�  and extW�  are interchangeably used in the 

energy equation for a closed system. 

Q�  

i i
J mj=� �  e e

J mj=� �  
0

dE

dt
=

extW�  

Fig. 2.8 Flow diagram of the energy balance 
equation for a single-flow steady system. 
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Many open devices operate at steady state. The stored energy, like any other 
extensive property, remains constant as the global state of a steady system does not 
change with time. For single-flow devices - devices with a single inlet and a single exit – 
the steady-state energy equation simplifies as 

dE

dt
( )

( ) ( )

( )

0

ext ext

ext

Energy In Energy Out

Energy transported out at the exit.

;      0 ;

     ke pe        ke pe   

    ke pe  

i i e e i e

i i i e e e

e e e

m j m j Q W m j j Q W

m h Q m h W

m h

= − + − ⇒ = − + −

⇒ + + + = + + −

⇒ + +

� �� �� � �

� �� �
����������� �����������

�
���������

( ) � ext

Heat added External work supplied.Energy transported in at the inlet.

 ke pe                 i i im h Q W= + + + −� ��
��������������

  (2.11) 

in which i em m m= =� � �  from the mass equation, Eq. (2.6), has been substituted As shown 

by the energy flow diagram of Fig. 2.8, this simplified energy equation can be interpreted 
as a balance between incoming energy through mass and heat and outgoing energy 
through mass and external work. A further simplification results when the kinetic and 
potential energy changes between the inlet and exit are not significant. The flow energy 
can be replaced by enthalpy, a thermodynamic property, which is relatively easier to 
evaluate.  

There are a few other customized forms of the energy balance equation for 
different types of systems that will be derived later. The examples below are intended to 
highlight different terms of the energy balance equation. Comprehensive analysis of 
systems will be undertaken only after entropy equation is developed in the next section.  
 

EXAMPLE 2-2 Energy Analysis: Unsteady Closed System 

A cup of coffee is heated in a microwave oven. If heat is added at a constant rate of 200 
W and the cup contains 0.3 kg of coffee, determine the rate of increase of the specific 
internal energy of the coffee. Neglect evaporation. 

SOLUTION Simplify the energy equation for the closed, unsteady system and evaluate 
the unsteady term.  

Assumptions The entire amount of heat (in the form of microwave radiation) goes into 
coffee and the cup itself does not participate.  

Analysis With no mass transfer, no external work transfer, and no changes in KE and PE, 
the energy equation, Eq. (2.8), reduces to 

Q�  

dt

dE
 

Fig. 2.9 System schematic and the energy 
diagram for Ex. 2-2. 
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d E
net

U

J
dt

= �
0

extQ W+ −� � ( )0

;    ;    ;
d mu du Q

Q
dt dt m

⇒ = ⇒ =
�

�

 
( )

( )( )

200 W
   

0.3 kg 1000 W/kW

kW
0.667 

kg

du

dt
⇒ = =  

Discussion The SL model, to be developed in the next chapter, expresses u  as a function 
of T  for an incompressible solid or a liquid. Once such relations are established, the rate 
of change of temperature, which is a much more interesting quantity, can then be 
calculated from this result. Note that instead of heat transfer if an electrical heater with 

el 200W = −�  W was used to warm up the coffee, a similar analysis would lead to identical 

result.  

 

EXAMPLE 2-3 Energy Analysis: Closed Steady System. 

A thin wall separates two large chambers, the left chamber containing boiling water at 

200 o C  and the right chamber containing a boiling refrigerant at 0 o C . The heat transfer 
rate from the left chamber to the wall is measured at 2 kW. Assuming the wall to be at 
steady state, determine the rate of heat transfer from the wall to the right chamber.  

SOLUTION Analyze the energy equation for the closed system, the wall, where heat 
transfer with the two chambers are the only interactions between the system and its 
surroundings. 

Assumptions Since the wall remains at steady state, all global properties, including the 
stored energy E , remain constant.  

Analysis Heat transfer at the two surfaces are represented by absolute values 1Q�  and 2Q�  

with their directions represented by arrows in Fig. 2.10.  The net rate of heat addition, 

therefore, is 1 2Q Q Q= −� � � . Substituting this in the energy equation, Eq. (2.8), and 

simplifying, we obtain  

dE

dt

0, steady state

netJ= �
0

1 2 extQ Q W+ − −� � �
0

2 1

;

  ;2 kWQ Q⇒ = =� �

 

Discussion For the stored energy in the wall to remain constant, the energy equation 
establishes that heat must leave the wall at the same rate as it enters. 

o0 C  

2 1 

o200 C  

1Q�  2Q�  

Fig. 2.10 System schematic and energy flow 

diagram for Ex. 2-3. 1Q�  and 2Q�  are 

absolute values, not algebraic quantities. 
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EXAMPLE 2-4 Energy Analysis: Open Steady System 

A steam turbine with a single inlet and exit produces 1.132 MW of shaft power while 
losing heat to the ambient atmosphere at a rate of 10 kW. The following data are supplied 

at the inlet and exit states. State-1: 3

1 0.1512 m / kgv = , 1 3247.6 kJ/kgh = , 1 25V = m/s, 
2

1 121 cmA = , 1 6 mz =  ; State-2: 3

2 1.694 m / kgv = , 2 2675.5 kJ/kgh = , 2 50V = m/s, 
2

2 680 cmA = , 2 3 mz = .  Determine each term of the (a) mass and (b) energy balance 

equations. 

SOLUTION Evaluate each term of the RHS of both the mass and energy equations for 
this work producing open system. Using the balance equations, obtain the unsteady 
terms.  

Assumptions The flow is uniform and in LTE at the inlet and exit. We cannot assume 
that the turbine is operating at steady state. 

Analysis Evaluate the mass flow rate and flow energy at the inlet and exit. 

State-1: 
( ) ( )

2

1 1
1 1

kJ kJ
ke 0.313 ;  pe 0.06 ;   

2 1000 J/kJ kg 1000 J/kJ kg

V gz
= = = =  

 1 1
1 1 1 1 1

1

ke pe 3247.9 kJ/k 2.0 kg/g;   s;
AV

j h m
v

= + + = = =�  

State-2:  
( ) ( )

2

2 1
2 2

kJ kJ
ke 1.25 ;  pe 0.03 ;   

2 1000 J/kJ kg 1000 J/kJ kg

V gz
= = = =  

2 2
2 2 2 2 2

2

ke pe 2676.7 kJ/k 2.0 kg/sg;  ;
A V

j h m
v

= + + = = =�  

The unknown unsteady term of the mass equation can now be evaluated. 

2 kg/s 2

1 2

 kg/s

                     0  
dm

m m
dt

= − =� �
��� ���

 

Similarly, the unsteady terms of the energy balance equation are evaluated as follows.  

1 

Q�  

shW�  

kW 1132  
2 

1J�  

2J�  

Q�−  

shW�  

Fig. 2.11 Schematic of the turbine and the 
energy flow diagram for Ex. 2-4. 
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�

1 2
10 kW 1132 kW6496 kW 535

1 1

4 

2 2 e

kW

xt                       0 

J J

dE
m j m j Q W

dt
= = −

= − + − =

� �

� �� �
����� ����� �����

 

Discussion The net rate of transport of energy into the system is net i e
J J J= −� � �  = 6496-

5354 kW  = 1142 kW, out of which 10 kW is lost as heat to the atmosphere (notice the 
negative sign), and the rest is delivered as shaft work. Note that, even though mass and 
stored energy remain constant, we cannot declare the system to be steady. The reverse, 
however, is always true.  

Going back to Ex. 1-16, netJ�  for the single-flow system was calculated as -20.85 

kW. If the device operates at steady state in an adiabatic manner, the energy equation 

yields ext netW J=� �  = -20.85 kW, the negative value indicating that external work is 

transferred to the system – a pump in this case - to increase the pressure of the flow.  

 

EXAMPLE 2-5 Energy Analysis for Open Unsteady System 

Steam from a supply line enters a rigid tank through a valve as shown in Fig. 2.12. 
During the filling process, heat is lost to the surroundings at a rate of 1 kW and a paddle-
wheel stirs the steam inside the tank at 500 rpm with a torque of 0.01 kN m⋅ to overcome 
viscous friction. The inlet conditions on the supply side of the valve are: 

1 0.11425 kg/sm =�  and 1 3069.26 kJ/kgh = . If the mass and specific internal energy of the 

steam in the tank at a given instant are 2 kg and 2510 kJ/kg respectively, determine the 
rate of change of (a) the total internal energy U and (b) specific internal energy u of the 
system. Neglect ke and pe at the inlet. 

SOLUTION Perform a mass and energy balance on the tank and valve as a system 
enclosed within the red boundary of Fig. 2.12.  

Assumptions Uniform flow based on LTE with negligible ke and pe at the port.  

Analysis Energy transport at the inlet and the work transfer by shaft can be calculated as 
follows. 

( )( )1 1 1 1 1 0.11425 3069.3 350.7 kW;J m j m h= ≅ = =� � �  

( )sh

500
2 2 0.01 0.523 kW;

60 60

N
W Tπ π= − = − = −�  

1 

Fig. 2.12 Schematic for Ex. 2-5. 
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The negative sign in the work transfer is necessary to indicate that work is transferred 

into the system. Likewise, the heat transfer is also negative, 1 kWQ = −� , since heat is 

transferred out of the system. The energy equation, Eq. (2.8), yields, 

i e

dE dU
J J

dt dt
≅ = −� � ( ) ( )

0

ext 350.7 1 350.2 0.52 k3 WQ W+ − = + − − − =� �  

Since the mass of the system does not remain constant, differentiating the LHS by parts, 
we get 

 
( )

i

d mudU du dm du
m u m um

dt dt dt dt dt
= = + = + �  

where, the mass balance equation is used to substitute im�  for /dm dt  in the last term. 

Simplifying,  

( )( )
1 1

350.2 31.72510 0.11425
2

 kWi

du dU
um

dt m dt

 
= − = − =    

�  

Discussion An increase in u  usually accompanies an increase in temperature for gases, 
in which case the temperature in the tank increases much above that in the supply line.  

 

2.1.3 Entropy Balance Equation  

The second law  of thermodynamics can be stated through the following postulates.  

i) Entropy S  of a system quantifies its molecular disorder and can be related to the 

number of ways in which the system’s internal energy can be distributed among its 

molecules; the specific entropy s  is a thermodynamic property which is transported by 

mass like any other specific property. 

ii) Entropy is transferred across a boundary by heat at a rate / BQ T� , where Q�  is the rate 

of heat transfer and BT  is the boundary temperature. Work, on the contrary, does not 

transfer any entropy. 

iii) Entropy cannot be destroyed.  It can be generated spontaneously until a system comes 

to equilibrium. That is, gen 0S ≥� , where genS�  represents the rate of entropy generation 

within a system. This is also known as the entropy principle .  

i  

iii smS ��� =  

Fig. 2.13 Transport of  molecular 
disorder or entropy by mass. 

B

Q

T

�
 

BT  

Fig. 2.14 Entropy is transferred by heat since 
the transfer involves a huge number of 
molecular interactions,  thereby, imparting 
entropy to the system.  
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In chapter 1, we have already discussed entropy from the microscopic viewpoint 
as a measure of molecular disorder in a system. The first postulate formally establishes 
entropy as a macroscopic property that helps describe an equilibrium. Because molecules 
have discrete energy levels, a given amount of energy can be distributed among the 
molecules of a system in a huge number of possible ways. The more the choices, the 
more is the disorder (see Anim. 1.F.entropy) or entropy. Boltzman defined entropy from 
a microscopic standpoint as lnS k= Ω , where k  is known as Boltzman constant and Ω  
is the number of microstates - the total number of ways in which the energy can be 
rearranged in the system without violating the first law. In our macroscopic treatment of 
thermodynamics, entropy is a macroscopic property just like internal energy and can be 
related to other properties of an equilibrium state without any reference to Boltzman 
equation.  

Like energy, entropy can be transported by mass; the rate of transport of entropy 

can be deduced from the generic transport equation, Eq. (2.1), as S ms=� �  (see Fig. 2.13 
and Anim. 2.D.entropyTransport). Additionally, the second postulate provides a 
fundamental means of entropy transfer by heat (see Fig. 2.14). Heat and work are both 
energy in transit, but they have a fundamental difference - work does not carry entropy, 
but heat does according to the second postulate. This can be understood from the fact that 
work transfer involves only organized or coherent motion - displacement of a boundary, 
rotation of a shaft, directed movement of electrons, all involve organized motion  –  and, 
therefore, have no direct impact on the degree of disorder of a system. Heat, on the other 
hand, is transferred when molecules of a warmer layer interacts with adjacent molecules 
of a cooler layer (conduction and convection heat transfer) or photons are transferred 
(radiation heat transfer). Since energy of molecules (and photons) is quantized, there is a 
huge number of possible interactions that can lead to a given amount of heat transfer 
across a plane. Energy transferred by heat, therefore, inherently carries entropy in the 
direction of heat transfer. Furthermore, if the interface (boundary) temperature is lower, 
energy levels are more densely packed and the same amount of heat can be transferred 
with more combinations of molecular interactions, that is, more entropy transfer. While 
energy transferred by work can be stored in an organized manner in a system (say, in 
system’s kinetic or potential energy as shown in Fig. 2.15) without affecting the system 
entropy, energy transferred by heat fundamentally involves transfer of entropy  (see 
Anim. 2.D.entropyTransfer) through random molecular interactions and the system 
entropy must increase as a result. The electrical work transfer in Fig. 2.16 does not carry 
any entropy into the resistance heater; however, when heat leaves the resistance heater, it 
must be carrying entropy with it. How does the heater replenish its entropy to maintain 

F  

V  

V  

Fig. 2.15 Mechanical work transfer to a rigid 
body affects all its molecules in an organized 
manner. 

BT  

Fig. 2.16 Entropy is generated in the electric 
heater through electronic friction and carried 
by heat. 
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steady state? That is where the third postulate comes in –Joule heating is one of several 
distinguished mechanisms that generate entropy.  

The third postulate states that all systems have a natural tendency to generate 
entropy. Even an isolated system is capable of transforming as its entropy can increase 
spontaneously until it reaches equilibrium, whereupon no further changes take place. A 
simple example of such spontaneous changes is illustrated in Fig. 2.17 where two 
different gases, initially separated, are allowed to mix inside an isolated system. Another 
example is shown in Fig. 2.18 where two bodies, initially at two different temperatures, 
are placed in thermal contact inside an isolated changer. In both cases, entropy is 
generated during spontaneous mixing process and spontaneous equalization of 
temperature. In each case, entropy is generated as a certain gradient – concentration 
gradient in the case of mixing and temperature gradient in the case of heat flow - is 
destroyed or diminished. Friction, which tries to dissipate a velocity gradient, is another 
common mechanism for entropy generation.  

Because entropy cannot be destroyed, the generated entropy is a permanent 
signature, a second-law footprint if you will, of a natural process. Once entropy is 
generated, there is no going back – entropy generation, therefore, is irreversible and a 
fundamental marker of the passage of time. Systems or processes that involve entropy 
generation are called irreversible . 

In chapter 6, we will establish a one-to-one connection between entropy 
generation and destruction of exergy, the useful part of the stored energy. It will be 
shown that whenever entropy is generated in a system, it is accompanied by destruction 
of a part of the stored exergy in the system. If electric energy can be stored in a battery in 
a reversible manner, that is, without any entropy generation, the entire useful energy 
(electricity in this case) can be extracted back at a later time. However, because of 
nature’s tendency to generate entropy, the stored exergy will decrease over time. The 
energy stored in a battery can be preserved by isolating it, but its exergy will 
spontaneously decrease due to relentless generation of entropy. As another example, 
useful energy can also be stored in the kinetic energy of an isolated flywheel. However, 
friction will ensure that the stored exergy will decay over time even though the stored 
energy will remain unchanged. Entropy generation, thus, can be linked to the 
spontaneous degradation of the quality of stored energy in a system.  

Friction being one of the easily identifiable causes of entropy generation, we will 
refer to the mechanisms of entropy generation, which will be explored throughout this 

book, as generalized friction with the rate genS�  (pronounced S-dot-gen) quantifying its 

( )t  

( )t t+ ∆  

Fig. 2.18 Entropy is generated as the 
temperature gradient is destroyed  
(through thermal friction) spontaneously 
in this isolated system. 

            Hot    Cold 

A B 
 

Warm 

A  B 

( )t  ( )t t+ ∆  

Fig. 2.17 Entropy is generated as the concentration 
gradient is destroyed spontaneously (through mixing 

friction) in this isolated system. 
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severity. Just as friction always opposes motion and at best can be zero for a perfectly 

smooth interface, genS�  is never negative and at best zero for idealized systems. A few of 

the entropy generating mechanisms – thermal friction, mixing friction, electronic friction, 
etc. - are illustrated in animations starting with 2.D.sGenFriction. 

To express the second law of thermodynamics in the format of a balance equation 
for entropy, let us use the simplified system of Fig. 2.6 (also see Anim. 
2.D.entropyBalanceEqn ) used for the derivation of the energy equation. Within the 
interval t∆ , the amount of entropy transported by mass at the inlet and exit are given by 

i i iS t m s t∆ = ∆� �  and e e eS t m s t∆ = ∆� �  respectively. By the second postulate, during the same 

interval, heat carries / BQ t T∆�  amount of entropy across the boundary provided the 

boundary temperature is uniform at BT . By the third postulate, the entropy that is 

spontaneously generated is given by genS t∆� , where gen 0S ≥� . Combining all participating 

mechanisms, ( )S t t+ ∆  can be related to ( )S t  as follows. 

 ( ) ( ) gen

kJ
       

K
i e

B

Q t
S t t S t S t S t S t

T

∆  
+ ∆ = + ∆ − ∆ + + ∆   

�
� � �  (2.12) 

Rearranging and taking limit, 

 

( ) ( )
gen

0

gen

lim

kJ
                       kW

s

i e
t

B

i i e e

B

S t t S t Q
S S S

t T

dS Q
m s m s S

dt T

∆ →

+ ∆ −
= − + +

∆

 
⇒ = − + + =  

�
� � �

�
�� �

  

For multiple inlets and exits, this equation leads to the entropy balance equation in its 
most general form and the meaning of each term (see Anim. 2.D.entropyBalanceTerms. ) 
explained as follows. 

Rate of increase Entropy Entropy Entropy 
of entropy for  transported by transported by transfe
an open system. mass flow in. mass flow out.

                        
i i e e

i e B

dS Q
m s m s

dt T
= − +∑ ∑

�
� �

����� ����� �����
gen

Rate of 
generation of
entropy insiderred
the system by heat.
boundary.

gen

kW
         

K

                         where, by second law,   0 

S

S

 
+   

≥

�
�����

�����

�

 (2.13) 



 2-20 

As with the mass and energy equations, the LHS is the unsteady term - the rate of change 
of total entropy in an open unsteady system. The RHS consists of contribution from 
transport of entropy by mass, boundary transfer of entropy through heat, and 
spontaneous generation of entropy as dictated by the second law.  

In words, the entropy equation states that the rate of increase of entropy of a 

generic system is equal to the sum of the net transport of entropy by the flows, transfer of 

entropy by heat transfer, and spontaneous generation of entropy.  Representing the net 

rate of entropy transport by netS� , Eq. (2.13) can be written in a shorter form: 

 
� �net gen net

Net Generation 
transportUnsteady TermBoundary 

term transfer

             ;  where,   i e

i iB

dS Q
S S S S S

dt T
= + + = −∑ ∑

�
� � � � �

��� ���

 (2.14) 

Like the energy flow diagram, an entropy flow diagram can be useful in graphically 
representing the entropy equation. The only new type of term in this equation is the 

generation term genS� , which is represented by the dotted arrow in Fig. 2.19. In our 

checkbook analogy, the generation term can be compared with the interest accrued in an 

account. Just as interest rate cannot be negative, a negative genS�  is forbidden by the 

second law.  

The entropy equation can be simplified in the same way as the energy or mass 
equation. For a closed system, for instance, the transport terms drop out, resulting in 

 
net

dS
S

dt
= �

0

gen gen

B B

Q Q
S S

T T
+ + = +
� �
� � ,  (2.15) 

Furthermore, if the system is isolated, there is no heat transfer either. While the energy of 

an isolated system remains constant, the entropy may increase since gen 0S ≥� . Attributed 

to Clausius,  this is one of several proclamations of the second law. 

Most open devices generally operate at steady state. For a single-flow device the 
steady-state entropy equation can be further simplified as  

dS

dt
( )

0

gen gen

gen

Entropy Out Entropy In Entropy Generated

;      0 ;

        /            

i i e e i e

B B

e i B

Q Q
m s m s S m s s S

T T

ms ms Q T S

= − + + ⇒ = − + +

⇒ = + +

� �
� �� � �

� �� �
��� ������� �����

,  (2.16) 

dt

Sd �
 ii smS �� =  

ee smS �� =  

BT

Q�
 BT  

genS�  

Fig. 2.19 Flow diagram for the entropy balance 
equation. 
 

1 

Q�  

shW�  

2 

Internal Boundary 

External Boundary 

gen,intS�  
oB TT   =  

gen,extS�  

gen,univ gen,int gen,extS S S= +� � �  

Fig. 2.20 Entropy is generated internally and 
externally for this turbine. 
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From this simplified form, it can be easily established that the entropy at the inlet must be 
equal to that at the exit for an adiabatic, steady, single-flow device with no internal 
(generalized) friction. – an important conclusion that will be fully explored in chapter 4.  

2.1.3.1 Entropy and Reversibility 

The transformation of a system from one equilibrium state to another is called a process. 
Reversing a process and restoring the system and its surroundings to their original 
conditions have been a long standing goal for engineers (think how nice it would be if all 
polluting processes could be easily reversed). Most practical processes, however involve 
some types of generalized friction, which leaves an indelible footprint in the form of 
entropy generation within and around the system. Since entropy cannot be destroyed, 
such processes cannot be completely reversed. They are called irreversible processes. 
The degree of irreversibility of a process is directly related to the amount (or rate) of 
entropy generation - more the entropy generation more the irreversibility of the process . 

Likewise, a system with a positive genS�  is called an irreversible system with the rate of 

entropy generation reflecting the rate of irreversibility of the system at a given instant.  

In most practical devices, entropy is generated not only inside the system but also 
in the immediate surroundings. This is particularly so for devices that exchanges heat 
with the surroundings. For instance, in the turbine of Fig. 2.20, entropy is not only 
generated inside the turbine but also in the immediate vicinity due to thermal friction  
(see Anim. 1.D.sGen-thermalFriction) -heat loss from the turbine into the atmosphere 

over a finite temperature difference. The entropy generation rate genS� , therefore, depends 

on the precisely how the boundary is drawn – the external red boundary in Fig. 2.20 
captures not only all the entropy generated inside the system but also that generated in the 
immediate surroundings. For a given system, entropy generated within the system is 
called internal irreversibility  and the generation outside is called external 

irreversibility. An extended enclosure such as the red boundary of Fig. 2.20 captures all 
the entropy generation, internal and external, and the extended system is known as the 
system’s universe. Entropy generated internally and externally are additive and their sum 
constitutes the total entropy generation rate in the system universe.  

 gen,univ gen,int gen,ext

kW
       

K
S S S

 
= +   

� � �  (2.17) 

It may appear that calculating gen,univS�  is a daunting task, given the subjective nature of 

immediate surroundings. Quite to the contrary, it is actually easier to calculate gen,univS�  

e  
i  

Externally Reversible 

gen,ext   0S =�  

gen,int   0S =�  

Internally  
Reversible 

Fig. 2.21 A reversible system must be 
internally and externally reversible. 
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than gen,intS�  in most cases. Consider, for instance, the turbine’s universe enclosed within 

the red external boundary of Fig. 2.20. Since the boundary passes through the 

surrounding air, BT  in the entropy balance equation can be replaced by the constant 0T , 

the atmospheric temperature. On the other hand, calculation of gen,intS�  would require a 

complete knowledge of the distribution of BT  over the internal boundary.  

Remember that the second law does not mandate generation of entropy; it only 
stipulates that entropy cannot be destroyed. It is therefore possible for a particular system 
(during a process or steady-state operation) not to generate entropy inside, outside, or in 
the entire system’s universe. The system is said to be internally reversible when 

gen,int 0S =� , externally reversible when gen,ext 0S =� , and reversible when gen,univ 0S =�  (see 

Fig. 2.21 and Anim. 2.D.reversibility). Obviously, a reversible system must be both 

internally and externally reversible since gen,univ 0S =�  implies gen,int 0S =�  and gen,ext 0S =�  

from Eq. (2.17). With no thermal friction in the immediate surroundings, adiabatic 

systems are externally reversible and gen,univ gen,intS S=� �  for such systems. Although most 

practical systems are highly unlikely to be reversible, reversibility will be shown to play a 
very important role in thermodynamic analysis by helping us define ideal system 
performance.  

For many practical systems with variable boundary temperature, the boundary can 

be divided into k  segments, each at a uniform temperature kT , and the entropy equation 

can be modified as follows  

 gen

kW
  

K
k

i i e e

i e k k

QdS
m s m s S

dt T

 
= − + +   
∑ ∑ ∑

�
�� �  (2.18) 

Whether genS�  in this equation represents gen,intS�  or gen,univS�  depends on what boundary, 

internal or external, is selected. For example, suppose we are interested in evaluating 

gen,univS�  for the closed steady system in Fig. 2.22 exchanging heat with three different 

reservoirs - 1Q�  and 2Q�  coming from sources at 1T  and 2T  and 0Q�  rejected to the ambient 

atmosphere at 0T . Noting that the heat transfer symbols represents absolute values with 

their direction indicated by the arrows in Fig. 2.22, Eq. (2.18) can be simplified 
producing 

1T  

2T  

0T  

0Q�  

1Q�

2Q�  

Fig. 2.22 An entropy analysis is much 
simpler for the system’s universe enclosed 
within the red external boundary. 
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dS

dt

0

i
m= �

0

i e

i

s m−∑ �
0

01 2
gen,univ

1 2 3

0 1 2
gen,univ

3 1 2

   

e

e

QQ Q
s S

T T T

Q Q Q
S

T T T

+ + − +

⇒ = − −

∑
�� �
�

� � �
�

  

Notice that a similar analysis to evaluate gen,intS�  would be much more difficult as 

temperature along the internal boundary most likely varies in a complicated manner. The 
entropy generation in the entire system’s universe is due to thermal friction in this case.  

In the following example we analyze closed and open steady systems to explore 
viscous and thermal friction as mechanisms of entropy generation. Besides these, 
electrical resistance heating (see Anim. 2.D.electronicFriction), free expansion, mixing, 
phase transformation, and chemical reactions are other prominent mechanisms of entropy 
generation.   
 

EXAMPLE 2-6 Entropy Generation through Heat Transfer (Thermal Friction) 

A thin wall separates two large chambers, the left one containing boiling water at 200 o C  

and the right one containing a boiling refrigerant at 0 o C . The heat transfer through the 
wall at steady state is measured at 2 kW. Assuming each wall surface to be at the 
respective chamber temperature, determine the rate of entropy transfer (a) from the left 
chamber to the wall and (b) from the wall to the right chamber. (c) Explain the difference 
in entropy flow from left to right.  

SOLUTION Analyze the entropy equation for the wall, a closed steady system, where 
heat transfer at the two faces are the only interactions. 

Assumptions Since the wall remains at steady state, all global properties, including the 
total entropy S  of the system enclosed within the red boundary of Fig. 2.33, remain 
constant.  

Analysis We have already established in Ex. 2-3 that the heat flow from the left chamber 
into the wall must be equal in magnitude to the heat flow from the wall into the right 
chamber. Using the same symbols used previously, the absolute values of entropy 
transported by heat at the two faces can be obtained from the second law. 

Left face:
( )

1

1

20
; 

273 200

kW
0.0423 

K

Q

T
= =

+

�
 

genS�  
1

1

T

Q�
 

2

2

T

Q�
 

o0 C  

2 1 

o200 C  

1Q�  2Q�  

Fig. 2.23 System schematics and entropy 
flow diagram for Ex. 2-6 (also see Anim. 2-
D.sGen-thermalFriction. 
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Right face: 2

2

20
 ;

273

kW
0.0733 

K

Q

T
= =

�
 

The direction of the entropy transfer, obviously, coincides with the heat flow direction as 
shown in Fig. 2.23. 

At steady state, the total entropy of the wall remaining constant, the unsteady term of the 
entropy balance equation must be zero. Therefore, Eq. (2.18) simplifies to 

dS

dt

0, steady state

i
m= �

0

i e

i

s m−∑ �
0

gen

gen gen

1 2

kW
0.0

; 

 0 ;  0.0732 0 309
K

.0423  ;

e

e B

Q
s S

T

Q Q
S S

T T

+ +

⇒ = − + ⇒ = − =

∑
�
�

� �
� �

 

The generation of entropy in the wall explains the difference in the entropy transfer at the 
two faces of the wall.  
 

Discussion In this example, we have used the entropy balance equation to uncover one of 
the fundamental mechanisms of entropy generation - heat transfer across a finite 
temperature difference or, in simpler terms, thermal friction. For a given rate of heat 

transfer, genS�  depends on the severity of temperature difference and is independent of the 

thickness or any other properties of the wall. Entropy generation through heat transfer is 
illustrated in Anim. 2.D.sGen-ThermalFriction. It is the thermal counterpart of friction, 
the most prominent mechanism of entropy generation, and will be referred in this 
textbook as thermal friction. 

Imagine what would happen if the natural direction of heat transfer was from the 
right chamber to the left, against the temperature gradient. An entropy analysis would 

then lead to a negative value of genS� , which is expressly forbidden by the second law. 

Given our daily life experience, the natural direction of heat transfer seems trivial, but 
without the help of the second law, this simple fact is impossible to establish. In fact, one 
of the original pronouncements of the second law goes as follows: 

It is impossible for any system to operate in such a way that the sole result would be an 

energy transfer by heat from a cooler body to a hotter body. 

This is known as the Clausius statement, deduced here as an exercise of the entropy 
balance equation. 

Did you know? 
 
Clausius statement  and Kelvin-Planck 
statements are the original pronouncements of 
the Second Law, which preceded development 
of entropy as a property. 
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If the temperature difference between the two chambers is reduced, genS�  

decreases and approach zero as 1 2T T→ . In the limit of infinitesimal T∆ , heat transfer is 

said to be reversible since no permanent signature results the form of genS� . However, 

temperature difference being the driving force of heat transfer, you may wonder if 
significant heat transfer is possible with an infinitesimal T∆ . But recall from Sec. 1.2.5 
that Q  not only depends on T∆ , but also on A , and the duration t . Therefore, by 

providing a large area of contact and sufficient duration, finite amount of reversible heat 
transfer is possible, however impractical that may be. 

 

EXAMPLE 2-7 Entropy Generation through Friction and Heat Transfer 

A fan recirculates air in a closed chamber while consuming 1 kW of electric power. The 

chamber temperature increases and reaches a steady value of 70 o C  at which point the 
electrical work is balanced by an equivalent amount of heat transfer out of the chamber 

into the surroundings at 25 o C . Determine the entropy generation rate (a) inside the 
chamber and (b) in the chamber’s universe. (c) Identify the mechanisms of entropy 
generation.  

SOLUTION Analyze the energy and entropy equation for the internal system and the 
system’s universe. 

Assumptions The chamber wall is not considered as part of the system 

Analysis At steady state, all global properties, including the total stored energy E  and 
entropy S , remain constant. The energy equation applied to the system or its universe 
(either boundary of Fig. 2.24) produces 

dE

dt

0, steady state

i
m= �

0

i e

i

j m−∑ �
0

ext

ext el

; 

 1 kW;

e

e

j Q W

Q W W

+ −

⇒ = = = −

∑ � �

� � �

 

For the two boundaries shown in Fig. 2.24, the entropy equation produces.  

Heat  

BT

Q�−
 

gen,intS�  

gen,extS�  

Fig. 2.24 System schematics and entropy 
flow diagram for Ex. 2-7. 
 

gen,univ gen,int gen,extS S S= +� � �  
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System: 
dS

dt

0, steady state

i
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Universe:  
dS

dt

0, steady state

i
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Discussion While gen,intS�  can be attributed primarily to the dissipation of kinetic energy 

of the air into internal energy through viscous friction, the difference gen,univ gen,intS S−� �  is 

due to thermal friction. Note that the solution would remain identical if the fan was 
driven by a shaft instead of the electric motor. Although work transfer, in this problem, 
ends up generating entropy, it is not always the case. For instance, if work transfer is used 
to raise a weight, impart rotational kinetic energy into a flywheel, or charge a battery, 
entropy generation could be reduced or even eliminated. It should be stressed that unlike 
heat, work does not transfer entropy with it. 

 

EXAMPLE 2-8 Entropy Analysis of an Open Steady System 

The following additional data are supplied for the steam turbine of Ex. 2-4. State-1: 

( )1 7.127 kJ/ kg Ks = ⋅  ; State-2: ( )2 7.359 kJ/ kg Ks = ⋅ . Also, the temperature of the 

turbine surface remains constant at o150 C  while the surrounding atmosphere is at 
o25 C . Assuming steady state operation, determine the entropy generation rate (a) inside 

the turbine and (b) in the turbine’s universe. 

SOLUTION Analyze entropy balance equation for the system and its universe. 

Assumptions Same as in Ex. 2-4.  

Analysis Simplifying the entropy balance equation, Eq. (2.13), for the internal system 
(see Fig. 2.25) and substituting the given properties, we obtain  

1 

Q�

 

2 

oT

Q�−
 

1S�  
2S�  

gen,intS�  
gen,extS�

Fig. 2.25 System schematics and entropy 
flow diagram for Ex. 2-8. 
 

gen,univ gen,int gen,extS S S= +� � �  

shW�  
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dS

dt

( )( ) ( ) ( )
( )

( )

0,steady state

gen,int

gen,int 1 2

                 0.488 kW/
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K
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For the system’s universe, shown by the red boundary in Fig. 2.25, 0BT T= . Therefore, 

dS

dt

1 214.25 kW/

0

gen,univ

gen,univ 1

K 14.72 kW/K
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0
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Discussion Entropy transport rates 1S�  and 2S�  or the energy transfers Q�  and shW�  for the 

turbine are independent of the boundary - internal or external - selected for the analysis.  
The only difference is in the calculation of entropy generation rate, which also disappears 
if the system is adiabatic. That is why the internal and external boundaries are used 
interchangeably in many analyses. 

 

2.2 Closed Steady Systems  

A large class of important systems – closed steady systems- can be analyzed without 
having to evaluate states, which entails an elaborate understanding of equilibrium, 
material models, and tables and charts. In what follows, we undertake a comprehensive 
analysis of closed steady systems with the help of the mass, energy, and entropy 
equations.  

A closed system has no mass interactions with its surroundings, and a steady 
system does not change its global state over time. When both these conditions are 
satisfied, we have a closed steady system. Notice how the generic open unsteady system 
of Anim. 2.A.genericSystem reduces to a generic closed steady system in Anim. 
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2.E.genericSystem. At steady state, the color composition of the image, that is, the picture 
does not change with time despite the presence of work and heat interactions; however, 
the spatial variation remains, indicating the possibility of the system to be non-uniform.   

Although most of the well-known thermodynamic devices - turbines, pumps, 
compressors, etc. – are open systems, we can identify plenty of closed steady systems if 
we look around. This textbook is a trivial but legitimate closed (no mass transfer) steady 
(the global state does not change with time) system. Non-trivial examples include a light 
bulb, a gear box, an electric heater, an electrical adapter, or even a refrigerator (watch 
animations starting with 2.E.lightBulb) – the global states of these closed systems remain 
unchanged over time. 

The mass m  of a closed system obviously remains constant, and so do all the 
global properties of a steady system, including E  and S . With the unsteady and 
transport terms set to zero, the mass, energy and entropy equations reduce to:  

Mass  [ ]constant     kgm =   (2.19) 

Energy  ( )ext sh el0     [kW]
B

Q W Q W W W= − = − + +� �� � � �  (2.20) 

Entropy  gen

kW
0     

K
B

Q
S

T

 
= +   

�
�  (2.21) 

Even a cursory look at the energy and entropy equations reveals that these equations do 
not involve any state properties, thereby, simplifying the analysis considerably. We have 
already analyzed a few closed steady systems in Examples 2-3, 2-6, and 2-7. Before we 
analyze a few more systems, let us define a commonly used performance parameter – the 
energetic or first-law efficiency. 

 Efficiency is one of the frequently used terms in engineering. We will come 
across many different types of efficiencies – energetic or first-law efficiency, thermal 
efficiency, isentropic efficiency, exergetic or second-law efficiency, combustion 
efficiency, and many more. Broadly speaking, efficiency is used to compare the 
performance of a device with that of an ideal device, or to compare a desired output with 
the required input.  

The energetic efficiency, also known as the first-law efficiency (see Fig. 2.26), is 
defined as 

 I

Desired Energy Output

Required Energy Input
η ≡  (2.22) 

Q�  

i
J�

 
eJ�  

 

dt

dE
 

extW�  

Fig. 2.26 An energetic efficiency of a system 
is defined as the ratio of the desired energy 
term to the required energy transfer. 
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where, the symbol η  (eta) is reserved for efficiency of any kind and the subscript I 

symbolizes the first law. Device specific in nature, the numerator and denominator in this 
definition usually appear as individual terms of the energy balance equation for the 
system. Often, an energy flow diagram can be helpful in formulating the definition of the 
energetic efficiency.  

 

EXAMPLE 2-9 Analysis of an Electric Heater 

An electric heater, operating steadily, maintains a chamber at 30 o C  while consuming a 

current of 1 A from a 120-V source. If the temperature of the heater surface is 250 o C , 
determine (a) the rate of heat transfer, (b) the energetic efficiency of the heater, (c) the 
rate of internal entropy generation, and (d) the rate of entropy generation in the heater’s 
universe.  

SOLUTION Analyze the energy and entropy balance equations for the closed steady 
system enclosed within the black (internal) and red (external) boundaries in Fig. 2.27. 

Assumptions The heater and its universe are at steady state. 

Analysis The electrical power consumption with appropriate sign is 

( )
( )( )

( )el

120 10
1.2  kW

1000 J/kJ 1000 J/kJ

VI
W = − = − = −�  

The energy equation, Eq. (2.20), reduces into identical form for either the system or its 
universe (red boundary) sketched in Fig. 2.27. 

dE

dt

0

el el;    1.2   k WQ W Q W Q W= − = − ⇒ = = −� � �� � �  

The desired energy output clearly is the heat produced by the heater while the required 
input is the electrical power consumed.  

 
el

1.2

1.2
100 %

I

Q

W
η

−
= = =

−

�

�
 

With the internal system boundary at 250 o C , an entropy balance for the internal system 
(enclosed by the black boundary in Fig. 2.27) produces 

Q�  

Heater's Universe  C
�30  

C
�250  

0.0023 kW/K  

gen,extS�  0.0017 kW/K  

kW
0.0040 

K
 

gen,intS�  

Fig. 2.27 System schematics and entropy flow 
diagram for Ex. 2-9 (see Anim. 2.D.sGen-

electronicFriction). 
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For the system’s universe (enclosed by the red boundary of Fig. 4.20), which is also at 
steady state 
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Discussion The difference between gen,univS�  and gen,intS�  is gen,extS� , which is the external 

entropy generation in the immediate surroundings of the heater. gen,intS�  is caused by the 

dissipation of electrical work into internal energy or what can be called  electronic 

friction while gen,extS�  must be due to thermal friction, a mechanism investigated in Ex. 2-7. 

The latter should not be confused with entropy transfer through heat.  

 

EXAMPLE 2-10 Shaft Work Transfer in a Gear Box 

A car engine delivers 150 kW of shaft power steadily at 4000 RPM into the gearbox with 
a gear ratio of 2 as shown in the accompanying figure. The surface of the gearbox is 

10 o C  warmer than the atmosphere, which is at 25 o C . If the heat lost to the surroundings 
through convection is 3 kW, determine the (a) power and torque delivered by the output 
shaft, (b) energetic efficiency, (c) entropy generation rate in the gearbox, and (d) entropy 
generation rate in the system’s universe. 

SOLUTION Analyze the energy and entropy balance equations for the closed steady 
systems enclosed within the black and red boundaries of Fig. 2.28. 

Assumptions The system and its universe are at steady state. 

Analysis The energy equation, Eq.(3.42), for either boundary in Fig. 2.28 can be written 
as  

dE

dt
( ) ( )

0

conv sh,out sh,in sh,in sh,out conv;   or, Q W Q W W W W Q= − = − − − = +� � �� � � � �  

150 kW
3 kW

147 kW

System

9.7 W/K  

gen,extS�  0.33 W/K  

W
10.03 

K
 

gen,intS�  

Fig. 2.28 System schematic, energy, and 
entropy flow diagrams for Ex.2-10. 
 

inshW ,
�

outshW ,
�

Universe
sSystem'

C°25

C°35



 2-31 

where convQ� , sh,outW� , and sh,inW�  are absolute values of the respective energy transfer rates. 

Solving for sh,outW�  from the given quantities, 

 sh,out sh,in conv 147 kW150 3W W Q= − = − =�� �  

The torque can be calculated from Eq. (1.11) given the RPM of the output shaft as 

4000 / 2 2000=  RPM.  

( )
( )sh

60 60
147

2 2 2000
0.702 kN mT W

Nπ π
= = = ⋅�  

The energetic efficiency can be defined as the ratio of the shaft power delivered by the 
system to the required input, the power delivered to the gearbox.  
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An entropy balance for the internal system (black boundary) produces 
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The entropy balance equation over the system’s universe (enclosed by the red boundary) 
yields 

dS
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Discussion gen,univS�  can be seen to be only marginally greater than genS� , indicating that 

the bulk of the entropy generation takes place due to friction inside the gearbox with the 
rest contributed by thermal friction in the immediate vicinity of the system. 
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2.2.1 Cycles – A Special Case of Closed Steady Systems  

It is quite easy to construct a device that converts work into heat. In fact, the electric 
heater of Ex. 3-9 converts electric work into heat with the perfect energetic efficiency of 
100%. As yet another example, consider the paddle-wheel device of Fig. 2.29. As the 
paddle stirs the fluid, viscous friction dissipates the kinetic energy into internal energy; 
the temperature rises, and heat starts conducting across the wall into the outside 
atmosphere.  Eventually, a steady state is reached and the simplified governing equations 
can be used to evaluate the energetic efficiency and the entropy generated in the system’s 
universe. 

 out out
sh,in out gen,univ

sh,in 0

;   therefore, =100%;   and,  ;  
I

Q Q
W Q S

W T
η= ≡ =

� �
� ��

�
 (2.23) 

where, sh,inW�  and outQ�  represent absolute values with their subscripts indicating the 

direction of energy transfer. The energetic efficiency of the device is 100% to satisfy the 

conservation of energy. Also, outQ�  and 0T  being positive, gen,univ 0S >� , satisfying the 

second law.   

While conversion of useful work into heat is a relatively simple to accomplish 
(rubbing hands against each other, for instance), the reverse is not so. A device that can 
steadily convert heat to useful work is called a heat engine (see Anim. 2.F.heatEngine). 
Building heat engines has been such a historical obsession for engineers that the word 
engineer owes its origin to early heat engines. 

At first thought, building a heat engine does not appear to be a difficult task. 
Useful work can be obtained by heating a gas in a piston-cylinder assembly as shown in 
Fig. 2.30 (also see Anim. 1.D.intEnergy); however, such a conversion is a one time event 
and is not sustainable on a steady basis. Historically, many conceptual designs have been 

proposed for a heat engine. In Fig. 2.31, work is produced at a steady rate of outW�  without 

any other interactions with the surroundings. With 0Q =� , the steady-state energy 

equation, Eq. (2.20), produces ext out 0W W= =� � . Any steady work output from this engine 

is, therefore, a clear violation of the first law. Such a fictitious engine is called the 
perpetual machine of the first kind or PMM1. The second device, shown in Fig. 2.32, 

produces work at a steady rate of outW�  as heat HQ�  is added from a reservoir at HT . An 

energy analysis quickly yields out HW Q= ��  , establishing an energetic efficiency of 100%. 

Clearly, the first law is no longer violated by this improved design. However, the entropy 

Generator
−+

Fig. 2.30 Although this device produces electricity 
from heat, it is not a heat engine because the process 
cannot be indefinitely sustained. 

sh,inW� outQ�

100%Iη =

sh,inW�

outQ�

Fig. 2.29 This device converts shaft power 
to heat with a 100% efficiency. 
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balance equation, Eq. (2.21), applied to the engine’s universe produces, H
gen,univ

H

Q
S

T
= −
�

� , a 

negative but impossible value given HQ�  and HT  are both positive quantities. To 

emphasize the violation of the second law by this type of fictitious engines, they arecalled 
the perpetual machines of the second kind or PMM2. 

Kelvin-Planck Statement The realization that PMM2 is forbidden by fundamental laws 
came before the development of the second law. In fact, the Kelvin-Planck statement of 
the second law asserts what we have just established from the entropy equation. 

It is impossible to build a heat engine that exchanges heat with a single reservoir.  

A reservoir or, more precisely, a thermal energy reservoir (TER) has been already 
introduced as a large reservoir of energy, a heating source or sink, whose temperature 
does not change regardless of the amount of heat transfer. The atmosphere, for instance, 

is a TER at 0T .  

The Clausius statement, derived in the previous section, and the Kelvin- Planck 
statement above are the pioneering pronouncements of the second-law of 
thermodynamics, which, historically, led to the discovery of entropy as a property. In our 
postulative approach, these statements are derived from the entropy balance equation. 
Towards the end of chapter 5, we will reconcile these two approaches by reconstructing 
the arguments that led to the concept of entropy.  

2.2.1.1 Heat Engine  

If the second perpetual motion machine discussed above is modified to reject heat CQ�  to 

a second TER (see Fig. 2.33) at CT , the energy and entropy balance equations, Eqs. 

(2.20) and (2.21), can both be satisfied. 

net ;H CQ Q W− =� � �  netTherefore,    0  if   ;H CW Q Q> >� ��  (2.24) 

gen,univ ;C H

C H

Q Q
S

T T
= −
� �

�  gen,univTherefore,    0  if   ;C
C H

H

T
S Q Q

T
≥ ≥� � �  (2.25) 

Here, all the heat and work transfer symbols represent absolute values, and appropriate 
signs are added while they are used in the energy or entropy equation. The analysis above 
establishes that positive work output by the engine is possible provided some of the heat 
received from the hot reservoir is rejected to a cold one. With the contradictions of the 

outW�

PMM 1−

Fig. 2.31 Perpetual motion machine of the 
first kind violates the first law. 
 

PMM-2

TER @ HT

H

H

T

Q�

HQ�

outW�

?

Fig. 2.32 Perpetual machine of the second 
kind violates second law of thermodynamics. 

gen,univS�
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perpetual machines removed, the construct of Fig. 2.33 forms a fundamental framework 
for a practical heat engine. The net work output of such a concept heat engine has to be 

less than the heat input, resulting in an energetic efficiency, net /
H

W Q�� , of less than 100%. 

The cold reservoir is generally is the atmosphere and the rejected heat CQ�  is completely 

dissipated into internal energy and wasted (hence, the name waste heat used in 

industries), leaving netW�  as the only desirable output and 
H

Q�  as the required input. 

Chapters 7 through 10 are exclusively devoted to analysis of heat engines and 
refrigeration cycles. For an overall analysis, however, a system executing a cycle can be 
treated as a closed steady system, allowing simplified analysis. Consider the schematic of 
a Rankine cycle, the analytical model of a steam power plant, shown in Fig. 2.34 and 
Anim. 2.F.openCycle, where several open devices are connected in series to form a 

closed loop. External work is supplied to the pump at a rate inW�  to raise the pressure of 

water so as to force it through the entire cycle. In the boiler, heat is added at a rate HQ�  

from an external high-temperature TER, say, a coal or gas fired furnace, to transform 
water into vapor. The turbine extracts a significant fraction of the flow energy (exergy, 

to be precise) of the high-pressure, high-temperature vapor as useful shaft work outW� . The 

low-pressure (sub-atmospheric) vapor, still hotter than atmospheric air, is condensed to 

liquid state by a heat exchanger called the condenser, where heat is rejected at a rate CQ�  

to a colder TER, usually the atmosphere or water of a nearby reservoir. The condensed 
water returns to the pump, completing the cycle. Power producing cycles of this type, 
where open steady devices are connected back to back to form a loop, are called open 

power cycles and exclusively covered in chapters 8 (Gas Power) and 9 (Vapor Power). 

 Observe that there is only heat and work transfer – and no mass transfer - across 
the red boundary of the system drawn around the Rankine cycle of Fig. 2.34 (and Anim. 
2.F.openCycle). The resulting closed system internalizes all the open devices, leaving 
only heat and external work interactions with its surroundings. As complex as the interior 
of the heat engine may be, it is rather easy to decide if it is at steady state or not. The 
image of the global system, taken with the state camera, will be quite colorful since the 
state varies from point to point within a device and from device to device in an overall 
fashion. However, if the engine operates at steady state, any two snapshots taken at two 
different macroscopic instants will be identical. Temperature and pressure sensors 
connected at various locations along the path of steam will show stationary readings, 
when fluctuations within a macroscopic instant are averaged out. The Rankine engine, 

C
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Q�

HTTER@
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H
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Q�
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netW�
CQ�
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�

�

Fig. 2.33 Energy and entropy diagram of 
a heat engine. 
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Fig. 2.34 The Rankine cycle consists 
of open steady devices connected in a 
loop. 
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therefore, qualifies as a closed steady device as described by the abstract diagram of Fig. 
2.33 or Anim. 2.F.openCycle. 

 Heat engines commonly found in automobiles are called reciprocating engines 
because of the reciprocating motion of the piston. There are two types of reciprocating 
engines - the spark-ignition or SI engines used in gasoline-powered vehicles are modeled 
by the air standard Otto cycle, and the compression-ignition or CI engines used in diesel 
powered vehicles are modeled by the air standard Diesel cycle. To briefly describe one of 
these cycles, say, the Otto cycle,  (see Anims. 1.B.closedPowerCycle and 
2.F.closedCycle), consider the four processes executed by a fixed mass of air trapped in a 
piston-cylinder device of Fig. 2.35. In the compression process, the piston is pushed from 
the bottom location, called the bottom dead center  or BDC, to the top location, the top 

dead center  or TDC, requiring inW  amount of boundary work. At the end of the 

compression process, heat HQ  is transferred to the air almost instantly at constant volume 

– this is to simulate the rapid combustion process that takes place in an actual spark 
ignition engine. The high pressure and high temperature air expands, pushing the piston 

back to the BDC and transferring outW  amount of boundary work into the crank shaft. 

Finally, waste heat in the amount CQ  is rejected at constant volume (to simulate the 

actual expulsion followed by fresh intake) until the air comes to the original state, 
completing the cycle. The atmospheric work (work done by or against the atmospheric 
pressure) during expansion and compression are equal and opposite in sign leaving the 

net work delivered to the shaft unaffected, i.e., cycle out inW W W= − . Such cycles executed 

by a closed system through a sequence of processes forming a loop are known as 
reciprocating or closed cycles, discussed exclusively in chapter 7. 

 During a cycle, the closed system consisting of the trapped gas cannot be 
considered steady, its state changing in a cyclic nature as the piston goes through the 
reciprocating motion. However, suppose the shortest time scale we are interested in is 
long enough for a large number of cycles to have finished execution. With the state 
camera exposed to multiple cycles in this macroscopic instant, the piston will appear as a 
blur between the TDC and BDC (see Fig. 2.36 or click the steady state button in Anim. 
2.F.closedCycle), and the intermittent transfers of work and heat will appear continuous. 

If n  is the fixed number of cycles executed every second, the cyclic quantities can be 

converted into rate basis through net cycleW nW=� , H HQ nQ=� , and C CQ nQ=� . The simplified 

sketch of Fig. 2.33 or Anim. 2.F.heatEngine, once again, can be used to conceptually 
represent a heat engine, this time implemented by a closed cycle.  

HQ

TERColdTERHot
CQ

TDC

BDC
inW

outW

Fig. 2.35 The Otto cycle consists of a series of 
processes forming a loop. 

 

TDC

BDC

 CCold TER Q�
HHot TER Q� 

inW� outW�

Fig. 2.36 Averaged over many cycles, 
even a reciprocating system can be 
regarded as closed and steady. 
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 In terms of the absolute symbols used in Fig. 2.33 for the energy transfers, the 
energy balance equation for the closed steady engine, regardless of how it is implemented 
(Rankine or Otto cycle), can be written as 

Energy: ( )
net

net net net0 ;        H C

Q

Q Q W Q W= − − ⇒ =

�

� � �� �

�����
 (2.26) 

The energetic efficiency of a heat engine is known as the thermal efficiency and is 
defined as follows (see Anim. 2.F.effAndCOP). 

net
I th

Desired Energy Output
1

Required Energy Input
H C C

H H H

W Q Q Q

Q Q Q
η η

−
= ≡ = = = −

� � ��

� � �
 (2.27) 

Operating expenses of a heat engine primarily depends on 
H

Q�  supplied from the burning 

of fossil fuels or other alternative sources. One of the goals in the design of an ideal heat 

engine, therefore, is to maximize thη , which also means minimization of the ratio of 

waste heat to the heat supplied, /
C H

Q Q� � .  

 

EXAMPLE 2-11 Energy Analysis of Heat Engine 

The fuel efficiency of a compact car is rated at 40 miles/gallon while operating at a 
steady speed of 70 mph with the engine producing a power of 40 hp to overcome 
aerodynamic drag and other resistances. If the fuel has a heating value of 44 MJ/kg and a 
density of 700 kg/m3, (a) determine the thermal efficiency of the engine. (b) What-if 

scenario: How would a 5% increase in the thermal efficiency affect the fuel mileage? 

SOLUTION Determine the rate of heat release 
H

Q�  and obtain the efficiency from Eq. 

(2.27). 

Assumptions  The engine runs at steady state. Entire heating value of fuel is converted to 
heat.  

Analysis Use the unit converter daemon to express all quantities into SI units. The 
volume flow rate of fuel to the engine is 

3
6mph 70 gal m

1.75 1.84 10  
mpg 40 h s

FV
−= = = = ×�  

The fuel consumption rate in kg/s, therefore, can now be obtained. 

Did you know? 
 
>Why are there two M’s in MMBTU (a million 
BTU)?  
The two M stand for a million in Roman numerals. 
 
 
>What is a Therm? 
A Therm is equivalent to the heating value of 100 
cubic ft of natural gas  and is equal to 105.5 MJ. 
 
>What is a  Quad and a Q? 
 
They are measures of large amount of energy. A 

Quad is 
121.055 10× MJ or 

1510  Btu. A Q is 

1000 Quad/s. or 33000 GW. 
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3
6 3

3

kg m kg
700 1.84 10  1.288 10  

m s s
F F Fm Vρ − −  

= = × = ×  
  

��  

The net power output of the engine is net 40 hp 29.83 kWW = =�  and the heat added due to 

combustion of fuel is ( )HVH FQ m=� � . Therefore, the thermal efficiency can be obtained 

from Eq. (2.27). 

( ) ( )( )
net net

th 3

29.83

HV 1.288 10
52.6

4400  
3%

0H F

W W

Q m
η

−
= = = =

×

� �

� �
 

What-If-Scenario Everything else remaining unchanged, mpg can be related to thermal 
efficiency as follows.  

( ) ( )th

net

mph mph mph mph
mpg HV HVF F F

F F HV m Q W
ρ ρ η ρ= = = =

�� ��
 (2.28) 

A 5% increase in the thermal efficiency, therefore, will increase the fuel mileage by 5%. 
From the above equation, it may appear that an increase in the speed of a car may 
increase its fuel mileage. This is not true because an increase in speed also increases the 

power production netW�  by the engine in a disproportionate manner (see Ex. 1-4), and the 

fuel mileage actually decreases as a result, especially at high velocity. 

Discussion The entire heating value is generally not completely utilized due to 
incomplete combustion and other reasons that will be discussed in chapter 13. An 
energetic efficiency, called combustion efficiency, is used to obtain a more realistic value 

of heat release, ( )combustion HVH FQ mη=� � .  

2.2.1.2 Refrigerator and Heat Pump  

Being an idealized model of a steam power plant, Rankine cycle is a reversible cycle. 
Conceptually, the Rankine cycle can therefore be run backwards, causing heat to flow 
from the cold reservoir to the working fluid of the cycle and then from the working fluid 
to the hot reservoir. Such a cycle is emulated by a refrigerator to keep a refrigerated 
space colder than the environment, and by a heat pump to keep a heated space warmer 
than the environment.  

A typical vapor compression refrigeration cycle behind a household refrigerator 
(Anim. 2.F.refrigerator) is sketched in Fig. 2.39 (and Anim. 2.F.refriCycle). The working 

Did you know? 
 
A window air conditioner with a rating of 
5000 Btu/hr with an EER of 10 means that 

1.47 kW
C

Q =�  and COP=2.93  so that 

net 0.5 kWW =� . 
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substance, which has a freezing temperature well below the freezing point of water, is 
called a refrigerant. In the evaporator, the temperature of the refrigerant is designed to 

be slightly below that of the refrigerated space, causing it to absorb CQ� , which is called 

the cooling load of a refrigerator. Change of phase (liquid to vapor) enables the 
refrigerant to remain at a constant temperature until it turns completely into vapor at the 

evaporator exit. An adiabatic compressor, consuming work at a rate of netW� , raises the 

pressure of the vapor to force it through the high-pressure condenser. An increase in 
pressure in the compressor also accompanies an increase in temperature (as in a bicycle 
pump) above the ambient temperature. Consequently, as the vapor enters the condenser, 

heat is rejected to the atmosphere at a rate HQ� . An expansion valve throttles the 

condensate into the evaporator, causing the pressure and temperature to drastically drop 
(the reason for this will become clear when we study the expansion valve in chapter 4), 
completing the cycle. This refrigeration cycle can also be used for the opposite purpose - 
transferring heat from a cold space to a warm space. The resulting device is then called a 

heat pump and HQ�  is called the desired heating load. 

 The essence of a refrigeration cycle or heat pump can be represented by the 
closed steady system of Fig. 2.38 or Anim. 2.F.effAndCOP (click on the Refrigerator 
button) in exactly the same manner as the heat engines were found equivalent to the 
closed steady system of Fig. 2.33. This closed steady system can represent a refrigerator, 

which extracts heat at a rate CQ�  from the refrigerated space in order to keep it at a low 

temperature 
C

T  against heat leakage or normal operational load. Looked upon as a heat 

pump, the same closed steady system supplies HQ�  to the hot reservoir to keep it warm at 

H
T  against any heat loss to a cold surroundings at 

C
T . The external work necessary to run 

the compressor is the required input in both configurations. 

 The energy equation, Eq. (2.26), derived for the heat engine, also applies to 
the refrigerator and heat pump described by the steady system of Fig. 2.38. The energetic 
efficiency for these devices can exceed 100%, and that is why it is called the coefficient 

of performance or COP. 

R

net

Desired Energy Transfer 1
COP

Required Input / 1
C C

H C H C

Q Q

W Q Q Q Q
≡ = = =

− −

� �

� � � ��
 (2.29) 

HP

net

Desired Energy Transfer 1
COP

Required Input 1 /
H H

H C C H

Q Q

W Q Q Q Q
≡ = = =

− −

� �

� � � ��
 (2.30) 

C

C

T

Q�

HTTER@

H

H

T

Q�

HQ�

netW�

CQ�

CTTER@

Fig. 2.38 Refrigerator or heat pump as a closed 
steady system. 

 

net

C
R

W

Q
COP

�

�
=

net

H
HP

W

Q
COP

�

�
=

inW�

CQ�

HQ�

Condenser

Cold Space

Evaporator

Atmosphere

Compressor

Valve
Expansion

Fig. 2.37 Vapor compression cycle  used in a 
refrigerator or heat pump. 
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Manipulating these equations, it can be shown that HP RCOP COP 1= + . Obviously, COP 

of a heat pump is always greater than 1. Although COP is a convenient measure of 
energetic performance of refrigerators and heat pumps, a different measure called the 
Energy Efficiency Rating or EER is often used in the USA. An EER is the number of 
Btu’s removed from a cooled space for every watt-hour of electricity consumed. Since 1 

W ⋅ h = 3.412 Btu, an EER is related to the COP by EER=3.412 COP .  

 

EXAMPLE 2-12 Energy Analysis of a Refrigerator 

Due to ineffective sealing, heat leaks into a kitchen refrigerator at a rate of 5 kW. If the 
COP of the refrigerator is 3.5, determine (a) the rate of heat rejection by the refrigerator 
into the kitchen, and (b) the net rate of energy transfer into the kitchen.  Treat the kitchen 
as a closed system.  

SOLUTION Perform an energy balance on the refrigerator as a closed steady system, 
and the kitchen as a closed unsteady system. 

Assumptions  The kitchen can be considered an adiabatic closed system while the 
refrigerator runs a closed sub-system that runs at a steady state. 

Analysis To keep the refrigerated space at a constant temperature, heat should be 

removed exactly at the same rate as the leakage rate. Therefore, 5 kWCQ =�  (see Anim. 

2.F.refrigerator). The net work and the rejected heat can be obtained as follows. 

net net

R

5
1.43 kW;    ;

COP 3.5
6.43 kWC

H C

Q
W Q Q W= = = = + =

�
� �� �  

As explained by the energy flow diagram of Fig. 2.39, the net rate of heat transfer from 
the refrigerator to the kitchen is 6.43-5 = 1.43 kW.  

Discussion Note that if we take the entire kitchen as the system, the only mode of energy 
transfer is electrical work. Therefore, regardless of how the electrical power is utilized 

inside the kitchen, el net 1.43 kWW W= =� �   

 

2.2.1.3 The Carnot Cycle  

Because a heat engine must reject some heat in order to satisfy the second law of 
thermodynamics, it can never achieve a thermal efficiency of 100%. What, then, is the 

1.43kW

SpaceCold

netW�

5kW

6.43kW

5kW

Fig. 2.39 Schematic for Example 2-12. 
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maximum limit for thη ? Parallel questions can be raised regarding the COP of a 

refrigerator or a heat pump. 

Purely through deductive reasoning, a young engineer named Sadi Carnot 
answered those questions in 1811, about 30 years before the first law was formally 
established, and along the way gave a mathematical representation of the second law. The 
cycle he proposed, called the Carnot cycle, constitutes the most efficient heat engine 
possible, and when its direction is reversed, yields the highest possible COP for a 
refrigerator or heat pump.  

2.2.1.3.1 Carnot Heat Engine  

The Carnot cycle is a completely reversible cycle, executed without any entropy 
generation, internal or external. It operates between two reservoirs (TER), one at a high 

temperature HT  and another at a low temperature CT  (usually the temperature of the 

ambient atmosphere 0T ). Since the cycle is reversible, heat transfer cannot take place 

across any finite temperature difference. CT  and HT  remaining constant, both heat 

addition and rejection must take place isothermally with only a differential temperature 
difference driving the heat transfers between the reservoirs and the engine (recall the 
discussion of reversible heat transfer in Ex. 2-6).  

Postponing specific implementations of Carnot cycle to chapter 7 (see Anim. 
7.A.carnotCycle for a preview), energy and entropy analysis can be performed on the 
concept Carnot engine sketched in Fig. 2.40, which differs from a generic heat engine 
(compare Fig. 2.40 with Fig. 2.33) in two respects:  the temperatures of heat addition and 

rejection in a Carnot engine must remain constant, and gen,univ 0S =�  because the Carnot 

engine is reversible. While the Rankine or Otto cycle is also reversible, recall that heat 
transfers in those engines do not take place at constant temperatures.  

The energy equation for the Carnot engine remains the same as Eq. (2.26), 

derived for the generic heat engine. However, when gen,univ 0S =�  is substituted in the 

entropy equation, Eq. (2.25), a simple yet powerful conclusion emerges.   

gen,univ0 CH

H C

QQ
S

T T
= − +

��
�

0

;         C C

H H

Q T

Q T
⇒ =

�

�
 (2.31) 

To ensure reversibility, heat transfer in a Carnot cycle must be proportional to the 
absolute temperature of the reservoir, independent of the details of the cycle. Introducing 

C
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=

�
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I

H

W

Q
η =

�

�

Fig. 2.40 Energy and entropy flow in a 
Carnot heat engine. 
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this result into the definition of thermal efficiency, Eq. (2.27), results in the following 
expression for the Carnot efficiency (see Anim. 2.F.carnotEff)  

 net
Carnot 1 1C C

H H H

W Q T

Q Q T
η = = − = −

��

� �
 (2.32) 

The Carnot efficiency is a remarkably simple yet elegant result that bypasses all the 
internal complexities of a cycle and gets to the bottom line in terms of easily measurable 
quantities, the absolute temperatures of the hot and cold reservoirs. The cold reservoir is 
usually the atmosphere; therefore, only the highest temperature used in any heat engine 
needs to be known in order to estimate an upper limit of its thermal efficiency.  

The following theorems, proved by Carnot, purely through deductive reasoning 
from the Kelvin-Planck statement, can be derived as corollaries of Eq. (2.32). 

Theorem 1 All Carnot engines operating between the same two temperatures, HT  and 

CT , must have the same efficiency.  

Equation (2.32), which was derived without any reference to the implementation of the 
cycle, shows that thermal efficiency of the Carnot engine is a function of the TER 
temperatures alone (see Fig. 2.41). Two different Carnot engines, implemented 
completely differently (see Anims.  7.A.carntoClosedCycle, 9.A.carnotCycle, and Fig. 
2.41)  but operating between the same pair of reservoirs must produce the same 
efficiency as dictated by Eq. (2.32) .  

Theorem 2 The efficiency of a Reversible engine is higher than any other engine 

operating between the same two temperatures.  

The efficiency of an irreversible engine operating between two fixed-temperatures can be 
derived by retaining the entropy generation term in the entropy equation, Eq. (2.25). 

gen,univ gen,univ0 ;       C C C CH

H C H H H

Q Q T TQ
S S

T T Q T Q
= − + ⇒ = +

� ��
� �

� �
 (2.33) 

The thermal efficiency of an irreversible heat engine, therefore, is given by 

th,irrev gen,univ Carnot gen,univ1 1C C C C

H H H H

Q T T T
S S

Q T Q Q
η η= − = − − = −

�
� �

� � �
 (2.34) 

With gen,univS� , HQ� , and CT , all being positive, Carnot th,irrevη η≥ .  

THTTER@

C 1 C

H

T

T
η = −

CTTER@

Fig. 2.41 All Carnot cycles have the same 
efficiency regardless of how they are implemented. 
 

Gas Carnot 
Cycle 

Vapor Carnot 

Cycle 
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Theorem 3 For the same cold reservoir temperature CT , the Carnot engine that has the 

larger T∆  has the higher efficiency.  

This is obvious from the expression of Carnotη  derived in Eq. (2.32). A plot of Carnotη  

against
H C

T T T∆ = − , where 
C

T  is assumed to be the standard atmospheric temperature 

0T  is shown in Fig. 2.42. Notice how rapidly the Carnot efficiency increases with T∆ , 

especially when the efficiency is below 40%.  

2.2.1.3.2 Carnot Refrigerator and Heat Pump  

Because Carnot heat engine is a completely reversible cycle, it can be simply reversed to 
serve as a refrigerator or a heat pump (compare Fig. 2.40 with Fig. 2.43). The entropy 
equation for this reversed configuration shown in Fig. 2.43 produces the same relation 
between the heat transfers – proportionality of heat transfer rate with absolute reservoir 
temperature - as in the case of the Carnot heat engine. 

gen,univ0 C H

C H

Q Q
S

T T
= − +
� �

�
0

;         C C

H H

Q T

Q T
⇒ =

�

�
 (2.35) 

Substituting this result in Eq. (2.29) and (2.30), the COP’s of the Carnot refrigerator and 
heat pump can be expressed as (see Anim. 2.F.carnotCOP) follows: 

R,Carnot

net

1
COP

/ 1
C C C

H C H C H C

Q Q T

W Q Q Q Q T T
= = = =

− − −

� �

� � � ��
 (2.36) 

HP,Carnot R,Carnot

net

COP 1 COPH H H

H C H C

Q Q T

W Q Q T T
= = = = +

− −

� �

� ��
 (2.37) 

Once again the striking simplicity of the formulas makes them some of the most elegant 
results in engineering. The maximum possible COP of a refrigerator or heat pump can be 
calculated merely from the knowledge of the temperatures of reservoirs. Further 
simplification can be achieved from the fact that one of the reservoirs – the hot reservoir 
for a refrigerator and the cold reservoir for a heat pump – is often the atmosphere. To 
study the sensitivity of the Carnot COP on the temperature difference between the 

reservoirs, Eq. (2.36) is used with 
H

T   set to the standard atmospheric temperature 0T . 

The resulting plot of Fig. 2.44 shows a dramatic increase in COP as CT  approaches 0T . 

Setting the temperature of the refrigerated space a few degrees closer to outside 
temperature, therefore, can result in considerable saving of work due to two reasons – 
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Fig. 2.42 Carnot efficiency monotonically 
increases with temperature difference.  
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Fig. 2.43 Energy and entropy flow in a 
Carnot refrigeration/heat pump cycle 

(see Anim. 2.F.carnotCOP). 
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improvement of COP and a reduction in CQ�  (due to a reduction in the driving force, 

0 C
T T− ,  for heat leakage).  

Although actual refrigerators and heat pumps do not operate as Carnot cycles, Fig. 
2.44 can be used as a qualitative guide for predicting actual COP. As an example, 

consider a Carnot heat pump designed for o20 C
H

T =  (temperature inside a house), 
o0 C

C
T =  (outside temperature), and 5 kW

H
Q =� (heat pumped to the house). The 

compressor, therefore, must be rated at 0.34 kW since the COP can be calculated from 
Eq. (2.37) as 14.65. Now suppose the temperature in a particular night drops down to, 

say, -20 o C  so that o20 C
C

T = − ; consequently, the COP decreases to 7.325, almost half 

its original value. To pump heat at the same rate, the compressor must be able to operate 
at twice its original power rating. Compounding the problem, the heating load can be 
expected to go up due to increased heat loss to the colder surroundings. Heat pumps, 
therefore, are not suitable for extreme climates. It is remarkable that we can reach such a 
powerful conclusion even though a detailed analysis of a refrigerator or a heat pump will 
be taken up in chapter 7. 

 

 

EXAMPLE 2-13 Carnot Heat Engine 

In the engine described in Ex. 2-11, the maximum temperature achieved during the cycle 
is 1500 K. If the atmospheric temperature is 298 K, evaluate if the fuel mileage of 40 
mpg claimed by the manufacturer is reasonable.  

SOLUTION Evaluate the Carnot efficiency and compare it with the actual thermal 
efficiency of the engine.  

Analysis The most efficient engine for the car is a Carnot engine running between 1500 
K and 298 K. The highest possible efficiency, therefore, is the Carnot efficiency. 

th,Max Carnot

298
1 1 80.1%

1500
C

H

T

T
η η= = − = − =  

The actual thermal efficiency, calculated in Ex. 3-11, is only 52.63%, much below the 
Carnot efficiency. Therefore, the fuel mileage claimed by the manufacturer is well within 
the theoretical limit.  
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Fig. 2.44 Carnot COP rapidly decreases if the 

temperature difference becomes more severe.  
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TEST Solution A closed steady daemon to calculate thermal efficiencies and COPs can 
be found in the Daemons> Closed> Steady page of TEST. However, given the simplicity 
of calculations, a TEST verification is probably not necessary.  

Discussion Approaching the Carnot efficiency is the ultimate goal of any energy efficient 
combustion engine. In chapters 7 through 10, we will discuss various approaches to 
improve efficiencies of actual heat engine and refrigeration cycles. Fuel cells (introduced 
in chapter 14), however, are not heat engines and, therefore, much of the concepts 
developed in this section cannot be applied to fuel cells.  

 

EXAMPLE 2-14 Reversible Refrigerator 

A kitchen refrigerator maintains the freezer compartment at a temperature o10 C−  and 

the main compartment at o1 C  while the outside temperature is o30 C . The refrigerator 
consumes a power of 2 kW while removing heat from the two compartments at a rate of 
10 MJ/h and 5 MJ/h respectively (see accompanying figure). Determine (a) the COP of 
the refrigerator and (b) the rate of entropy generation in the refrigerator’s universe. (c) 
What-if scenario: What would the power consumption be if the refrigerator operated in a 
reversible manner?   

SOLUTION Perform an energy and entropy balance on the refrigerator’s universe, a 
closed system enclosed within the red boundary of Fig. 2.45. 

Assumptions The refrigerator can be modeled as a closed steady system.  

Analysis Referring to the accompanying sketch, the known heat transfer rates are 

10 MJ/h 2.778 kWFQ = =�  and 5 MJ/h 1.389 kWMQ = =� . By definition, the coefficient 

of performance is 

R

net

Desired Energy Transfer 2.778 1.389
COP

Required 
2.

p 2
0

In ut
8F MQ Q

W

+ +
= = = =

� �

�
 

An energy balance at steady state yields 

( ) ( )

( )

0 net

0 net

0 ;

  2.778 1.389 2 6.167 kW;

F M

F M

Q Q Q W

Q Q Q W

= + − − −

⇒ = + − = + − − =

� � � �

� � � �
 

An entropy balance over the system’s universe (red boundary) produces 

2 kW

Freezer

netW�

10 MJ/h

Fig. 2.45 System schematic and energy 
flow diagram for Ex. 2-14. 
 

o10 C−

5 MJ/h o1 C

0Q�



 2-45 

0
gen,univ

0

0
gen,univ

0

0

6.167 2.778 1. k389
 

303 263 27

W
0.0047 

K4

F M

F M

F M

F M

QQ Q
S

T T T

Q Q Q
S

T T T

= + − +

⇒ = − − = − − =

�� �
�

� � �
�

 

When a reversible refrigerator replaces the actual one, 0Q�  and netW�  would both change as 

gen,univS�  goes to zero. An entropy balance for the reversible system produces 

0,rev

gen,univ

0

0 F M

F M

QQ Q
S

T T T
= + − +

�� �
�

0

0,rev 0

2.778 1.389
 303 4.736 kW

263 274
F M

F M

Q Q
Q T

T T

   
⇒ = + = + =   

  

� �
�

 

Substituting this in the energy balance equation, 

( ) ( )0,rev net, rev

net, rev 0,rev

0 ;

  4.736 2.778 0.569 kW1.389 ;

F M

F M

Q Q Q W

W Q Q Q

= + − − −

⇒ = − − = − − =

� � � �

� � ��
 

The COP of the reversible refrigerator now can be calculated as 

R, rev

net, rev

2.778 1.389
COP

0.56
7 3

9
. 2F MQ Q

W

+ +
= = =
� �

�
 

Discussion Note that using an average cold-space temperature of 268.5 KCT = , results 

in a Carnot COP of 268.5/(303-268.5) = 7.78, which overestimates the correct answer.  

 

EXAMPLE 2-15 Heat Pump and its Alternatives 

A house requires 600 MJ of heat per day to maintain its temperature at 20 o C  while the 

outside temperature is 2 o C . If the cost of electricity is 10 cents per kW h⋅  and the cost 
of natural gas is 75 cents per Therm, compare the daily operational cost of the following 
alternative heating systems: (a) Electrical heating, (b) Gas heating system with an 
energetic efficiency of 90%. (c) A Carnot heat pump.  

SOLUTION Perform an energy analysis on each alternative, shown by the subsystems in 
Fig. 2.46.  

HQ�

Heating
Electrical

GasQ�

netW�

HQ�

HQ�

DQ�

HT

PumpHeat

elW�

Heating
Gas

Fig. 2.46 Three options (subsystems within the 
red dashed boundaries) for heating a house. 
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Assumptions Each heating subsystems behaves as a closed steady system.  

Analysis Use the unit converter daemon to convert different energy units into MJ: 

1 kW h 3.6 MJ⋅ = , 1 Therm 105.5 MJ= . Therefore, the cost of electricity and natural gas 
per unit MJ can be calculated as 2.857 cents and 0.711 cents respectively.  

An energy balance for electrical heater as a closed steady system (see Fig. 2.46) produces 

( ) ( )

( ) ( )

el H
H el el H

el H

0 ;     ;     ;

  600 MJ

Electrical Heating Cost 600 0.02
$

16.67 
da

78
y

W Q
Q W W Q

t t

W Q

= − − − ⇒ = ⇒ =
∆ ∆

⇒ = =

= =

� �� �

 

For gas heating, the energetic efficiency relates the heat transferred to the house to the 

heat released by gas gasQ� . An energy balance for the furnace yields 

( )I, heater gas H ext0 Q Q Wη= − −� � �

( )( )

0

H H
gas gas

I, heater I, heater

;  

600
  666.7 MJ

0.9

Gas Heating Cost 666.
$

4.74 
day

7 0.00711

Q Q
Q Q t t

η η
⇒ = ∆ = ∆ = = =

= =

�
�  

A Carnot heat pump operating between the temperature inside and outside the house will 
have a COP of  

HP,Carnot

0

293
COP 16.3

18
H

H

T

T T
= = =

−
 

Therefore, cost of the work input, supplied by electrical power, can be calculated as 

( )
600

HP Electricity Cost 0.0278
16.

$
1.02 

day3

 
= = 
 

 

Discussion The best alternative, clearly, is the reversible heat pump as far as the 
operating cost is concerned. However, there are a few caveats. A real heat pump has a 
much lower COP than its Carnot counterpart. Also, if the outside temperature decreases 

below 2 o C , the COP of the heat pump deteriorates drastically (see Fig. 2.44).  
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2.2.1.4 The Kelvin Temperature Scale  

While discussing temperature as a property in section 1.3.4.5, the Kelvin scale for 
absolute temperature was asserted as a better alternative to arbitrary Celcius or Fahrenheit 
markings on a thermometer. Having discussed the Carnot theorems, we are now in a 
position to understand the arguments that led Kelvin to establish a purely thermodynamic 
temperature scale that bears his name. 

When Carnot proposed his theorem (see sec. 2.2.1.3), he did not have the benefit 
of the balance equations. In fact, the concept of entropy or even heat as a form of energy 
in transit did not exist. Although by Carnot efficiency, we routinely mean 

Carnot 1 /
C H

T Tη = − , what Carnot actually proposed as Theorem-1 is  

( ) ( )net
th,Carnot 1 1 , ;  or, ,C C

C H C H

H H H

W Q Q
f T T f T T

Q Q Q
η = = − = − =

� ��

� � �
 (2.38) 

That is, the thermal efficiency of a reversible engine operating between two constant-
temperature reservoirs is a function of the temperatures of the reservoirs alone. He 
arrived at this conclusion purely through deductive reasoning from Kelvin-Planck 
statement of the second law.   

Kelvin realized that Carnot’s conclusion is independent of the unit used for 

temperature and set out to explore the temperature dependent unknown function f  of Eq. 

(2.38).  To follow Kelvin’s argument, consider the three Carnot engines - two in series 
and one in parallel - as shown in Fig. 2.47. Applying Eq. (2.38) to each engine, we obtain 

( ) ( ) ( )1 2 1
1 2 2 3 1 3

2 3 3

, ;  , ;  and, , ;
Q Q Q

f T T f T T f T T
Q Q Q

= = =
� � �

� � �
  

( ) ( ) ( )1 1 2
1 3 1 2 2 3

3 2 3

  , , ,
Q Q Q

f T T f T T f T T
Q Q Q

⇒ = = =
� � �

� � �
 (2.39) 

The nature of the function f  must be such that 2T  disappears on the right hand side of 

Eq. (2.39). This is possible only if  f  has the following form.  

 1@TTER
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Fig. 2.47 Illustration used to develop the 
absolute temperature scale. 
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Kelvin proposed the simplest possible form, ( )g T T= , for the function g  so that Eq. 

(2.38) reduces to the familiar form 

 
Carnot Cycle

H H

C C

T Q

T Q

 
=  
 

�

�
  (2.41) 

Equation (2.41) defines the new temperature scale known as the Kelvin scale. By taking 

the limit of 0CQ →�  or HQ → ∞�  we can see that the lower and upper limit of the Kelvin 

temperature are zero and infinity respectively – hence, the name absolute temperature 
for this thermodynamic scale of temperature.  

2.3 Closure 

In this chapter, we have introduced the fundamental laws of thermodynamics, translated 
them into balance equations, and applied those to the study of closed steady systems. The 
chapter begins with derivation of with the mass, energy, and entropy balance equations. 
Flow diagrams for energy and entropy are introduced to visualize different terms of the 
balance equations for energy and entropy. The first and second laws of thermodynamics 
are introduced in a postulative manner and the mechanisms of entropy generation are 
discussed with several examples. Energetic efficiency and reversibility are discussed in a 
general manner. The remainder of the chapter is devoted to comprehensive analysis of 
closed steady systems. Heat engines, refrigerators, and heat pumps are studied as special 
cases of closed steady systems. The thermal efficiency of heat engines and COP of 
refrigerators and heat pumps are introduced as special energetic efficiencies. Carnot 
efficiency and Carnot COP’s  are derived from an energy and entropy analysis of the 
reversible Carnot cycles.  The Kelvin temperature scale, introduced in chapter 1, is finally 
established from a theoretical standpoint as a closing note.  

 
 

2.4 Index 
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What is new: 

1. Balance equations without the burden of property evaluation. 

2. All equations treated in a similar manner with emphasis on similarities. 

3. Use of specific flow energy in a consistent manner. Wdot_ext in a consistent 
manner for both closed and open systems. 

4. Energy and entropy flow diagrams for systems. 

5. Using the daemons to understand the balance equations. 

6. Closed steady systems without properties 

7. Closed cycles treated as a special case of closed steady systems. 

8. We make a point that a large class of systems can be analyzed without tables and 
charts – many students don’t know that. 

 

To do: 1. Rename 2.A.openUnsteady to openUnsteadySystem. 

 

 

To do: check all references with 1.xx etc. Also all other references to 1. 

Pluses: Derivation in the same template. Entropy as the basis. Different statements are 
derived. Much more indepth discussion of second law. Entropy analysis of closed steady 
systems showing mechanisms of entropy generation through entropy diagram is unique. 
Derivation of T-ds equation is much more general with much more rigor. Right in chapter 
2 one uses the comprehensive analysis without the clutter of property evaluation. Use of 
energy and entropy flow diagrams. Analysis of cycles without the clutter of property 
evaluation. Establish the analysis template of energy and entropy balance equation early. 

Note: For a closed system with dQ, dW = 0; therefore, dU = dQ. TdS equation will 
produce TdS = dU+TdSgen,int. Therefore dSgen = 0. That means with TB = T you have 
to heat reversibly. The dSGen in the T-ds derivation, therefore, comes solely from the 
work lost. dQ cannot cause entropy generation as there is no temperature discontinuity. 
The T-ds proof has to be slightly rewritten. 
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